Skip to main content

Advertisement

Log in

Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

F or SALS:

Familial or sporadic amyotrophic lateral sclerosis

SOD1:

Superoxide dismutase 1 (m, mutant; WT, wild-type)

CSF:

Cerebrospinal fluid

DNA:

Deoxyribonucleic acid

cDNA:

Complementary DNA

EAAT2:

Excitatory amino acid transporter 2

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GC-MS:

Gas chromatography coupled to mass spectrometry

GFP:

Green fluorescent protein

GFAP:

Glial fibrillary acidic protein

GLT1:

Glial glutamate transporter 1

QC:

Quality control

PCA:

Principal Component Analysis

OPLS-DA:

Orthogonal partial least-squares discriminant analysis

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

TCA cycle:

Tricarboxylic acid cycle

GSH:

Glutathione

NMDA:

N-methyl-D-aspartic acid

References

  1. Korner S, Kollewe K, Ilsemann J, Muller-Heine A, Dengler R, Krampfl K, Petri S (2012) Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol. doi:10.1111/ene.12015

    PubMed  Google Scholar 

  2. Rocchetti I, Taruscio D, Pierannunzio D (2012) Modeling delay to diagnosis for amyotrophic lateral sclerosis: under reporting and incidence estimates. BMC Neurol 12:160. doi:10.1186/1471-2377-12-160

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. doi:10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  4. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615. doi:10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  5. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neuron disease. J Neurol Neurosurg Psychiatry 76(8):1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38(4):691–695. doi:10.1002/ana.410380424

    Article  CAS  PubMed  Google Scholar 

  7. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T et al (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917(1):97–104

    Article  CAS  PubMed  Google Scholar 

  8. Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ, Lau SS, Mitchell JD, Lynch PG (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19(6):797–798

    CAS  PubMed  Google Scholar 

  9. Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, Rothstein JD, Borchelt DR et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3(8):e2849. doi:10.1371/journal.pone.0002849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH Jr et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69(5):2064–2074

    Article  CAS  PubMed  Google Scholar 

  11. Peluffo H, Shacka JJ, Ricart K, Bisig CG, Martinez-Palma L, Pritsch O, Kamaid A, Eiserich JP et al (2004) Induction of motor neuron apoptosis by free 3-nitro-L-tyrosine. J Neurochem 89(3):602–612. doi:10.1046/j.1471-4159.2004.02363.x

    Article  CAS  PubMed  Google Scholar 

  12. Zagami CJ, Beart PM, Wallis N, Nagley P, O'Shea RD (2009) Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia 57(2):119–135. doi:10.1002/glia.20739

    Article  PubMed  Google Scholar 

  13. Wallis N, Zagami CJ, Beart PM, O'Shea RD (2012) Combined excitotoxic-oxidative stress and the concept of non-cell autonomous pathology of ALS: insights into motoneuron axonopathy and astrogliosis. Neurochem Int 61(4):523–530. doi:10.1016/j.neuint.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  14. Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR (2008) Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 107(5):1271–1283. doi:10.1111/j.1471-4159.2008.05699.x

    Article  CAS  PubMed  Google Scholar 

  15. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574–13581. doi:10.1523/jneurosci.4099-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10(1):75–82. doi:10.1016/s1474-4422(10)70224-6

    Article  CAS  PubMed  Google Scholar 

  17. Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A 101(30):11159–11164. doi:10.1073/pnas.0402026101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez de Aguilar JL, Dupuis L, Oudart H, Loeffler JP (2005) The metabolic hypothesis in amyotrophic lateral sclerosis: insights from mutant Cu/Zn-superoxide dismutase mice. Biomed Pharmacother 59(4):190–196. doi:10.1016/j.biopha.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One 6(4):e17947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc'h P, Emond P, Gordon P et al (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5(10):e13223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blasco H, Corcia P, Pradat PF, Bocca C, Gordon PH, Veyrat-Durebex C, Mavel S, Nadal-Desbarats L et al (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res. doi:10.1021/pr400376e

    PubMed  Google Scholar 

  22. Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Antar C, Veyrat-Durebex C, Moreau C, Devos D et al (2014) Untargeted 1H-NMR metabolomics in CSF: toward a diagnostic biomarker for motor neuron disease. Neurology. doi:10.1212/wnl.0000000000000274

    PubMed  Google Scholar 

  23. Kumar A, Bala L, Kalita J, Misra UK, Singh RL, Khetrapal CL, Babu GN (2010) Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta. doi:10.1016/j.cca.2010.01.016

    Google Scholar 

  24. Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE, Bowser R, Lawson R et al (2012) Biochemical alterations associated with ALS. Amyotroph Lateral Scler 13(1):110–118. doi:10.3109/17482968.2011.619197

    Article  CAS  PubMed  Google Scholar 

  25. Lawton KA, Brown MV, Alexander D, Li Z, Wulff JE, Lawson R, Jaffa M, Milburn MV, et al (2014) Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph Lateral Scler Frontotemporal Degener: 15(5-6): 362–370. doi:10.3109/21678421.2014.908311

  26. Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C, Harrison S, Vouros P et al (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1(2):101–108. doi:10.1007/s11306-005-4810-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veyrat-Durebex C, Corcia P, Dangoumau A, Laumonnier F, Piver E, Gordon PH, Andres CR, Vourc’h P et al (2014) Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis. Mol Neurobiol 49(2):966–983. doi:10.1007/s12035-013-8573-9

    Article  CAS  PubMed  Google Scholar 

  28. Huang M, Joseph JW (2014) Assessment of the metabolic pathways associated with glucose-stimulated biphasic insulin secretion. Endocrinology 155(5):1653–1666. doi:10.1210/en.2013-1805

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Qi Y, Liu H, Fan G, Chai Y (2013) Effects of celastrol on human cervical cancer cells as revealed by ion-trap gas chromatography-mass spectrometry based metabolic profiling. Biochim Biophys Acta 1830(3):2779–2789. doi:10.1016/j.bbagen.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  30. Meissen JK, Yuen BT, Kind T, Riggs JW, Barupal DK, Knoepfler PS, Fiehn O (2012) Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism. PLoS One 7(10):e46770. doi:10.1371/journal.pone.0046770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roe B, Kensicki E, Mohney R, Hall WW (2011) Metabolomic profile of hepatitis C virus-infected hepatocytes. PLoS One 6(8):e23641. doi:10.1371/journal.pone.0023641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L, Keun HC (2015) Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol Neurobiol. doi:10.1007/s12035-015-9165-7

    PubMed  PubMed Central  Google Scholar 

  33. Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194(3):209–221. doi:10.1002/aja.1001940306

    Article  CAS  PubMed  Google Scholar 

  34. Maier O, Bohm J, Dahm M, Bruck S, Beyer C, Johann S (2013) Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration. Neurochem Int 62(8):1029–1038. doi:10.1016/j.neuint.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Durham HD, Dahrouge S, Cashman NR (1993) Evaluation of the spinal cord neuron X neuroblastoma hybrid cell line NSC-34 as a model for neurotoxicity testing. Neurotoxicology 14(4):387–395

    CAS  PubMed  Google Scholar 

  36. Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74(5):1895–1902

    Article  CAS  PubMed  Google Scholar 

  37. Alliot F, Pessac B (1984) Astrocytic cell clones derived from established cultures of 8-day postnatal mouse cerebella. Brain Res 306(1-2):283–291

    Article  CAS  PubMed  Google Scholar 

  38. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12(10):1784–1792. doi:10.1039/c2lc40094d

    Article  CAS  PubMed  Google Scholar 

  39. Hogerton AL, Bowser MT (2013) Monitoring neurochemical release from astrocytes using in vitro microdialysis coupled with high-speed capillary electrophoresis. Anal Chem 85(19):9070–9077. doi:10.1021/ac401631k

    Article  CAS  PubMed  Google Scholar 

  40. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622. doi:10.1038/nn1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112(1):2–16

    Article  CAS  PubMed  Google Scholar 

  42. Beck R, Pedrosa RC, Dejeans N, Glorieux C, Leveque P, Gallez B, Taper H, Eeckhoudt S et al (2011) Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study. Investig New Drugs 29(5):891–900. doi:10.1007/s10637-010-9441-3

    Article  CAS  Google Scholar 

  43. Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XF (2014) Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5:3446. doi:10.1038/ncomms4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Avshalumov MV, MacGregor DG, Sehgal LM, Rice ME (2004) The glial antioxidant network and neuronal ascorbate: protective yet permissive for H(2)O(2) signaling. Neuron Glia Biol 1(4):365–376. doi:10.1017/s1740925x05000311

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dietmair S, Hodson MP, Quek LE, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK (2012) Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng 109(6):1404–1414. doi:10.1002/bit.24496

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Aracama A, Peijnenburg A, Kleinjans J, Jennen D, van Delft J, Hellfrisch C, Lommen A (2011) An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 12:251. doi:10.1186/1471-2164-12-251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leon Z, Garcia-Canaveras JC, Donato MT, Lahoz A (2013) Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis 34(19):2762–2775. doi:10.1002/elps.201200605

    CAS  PubMed  Google Scholar 

  48. Dettmer K, Nurnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399(3):1127–1139. doi:10.1007/s00216-010-4425-x

    Article  CAS  PubMed  Google Scholar 

  49. Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90(3):875S–880S. doi:10.3945/ajcn.2009.27462CC

    Article  CAS  PubMed  Google Scholar 

  50. Kirby J, Halligan E, Baptista MJ, Allen S, Heath PR, Holden H, Barber SC, Loynes CA et al (2005) Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128(Pt 7):1686–1706. doi:10.1093/brain/awh503

    Article  PubMed  Google Scholar 

  51. Wuolikainen A, Andersen PM, Moritz T, Marklund SL, Antti H (2012) ALS patients with mutations in the SOD1 gene have an unique metabolomic profile in the cerebrospinal fluid compared with ALS patients without mutations. Mol Genet Metab 105(3):472–478. doi:10.1016/j.ymgme.2011.11.201

    Article  CAS  PubMed  Google Scholar 

  52. Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D et al (2007) Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25(6):1669–1677. doi:10.1111/j.1460-9568.2007.05415.x

    Article  PubMed  Google Scholar 

  53. Choi CG, Frahm J (1999) Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med 41(1):204–207

    Article  CAS  PubMed  Google Scholar 

  54. Kalra S, Hanstock CC, Martin WR, Allen PS, Johnston WS (2006) Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 63(8):1144–1148. doi:10.1001/archneur.63.8.1144

    Article  PubMed  Google Scholar 

  55. Block W, Karitzky J, Traber F, Pohl C, Keller E, Mundegar RR, Lamerichs R, Rink H et al (1998) Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol 55(7):931–936

    Article  CAS  PubMed  Google Scholar 

  56. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 21(4):647–658

    CAS  PubMed  Google Scholar 

  57. Choi JK, Kustermann E, Dedeoglu A, Jenkins BG (2009) Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30(11):2143–2150. doi:10.1111/j.1460-9568.2009.07015.x

    Article  PubMed  PubMed Central  Google Scholar 

  58. de Belleroche J, Recordati A, Rose FC (1984) Elevated levels of amino acids in the CSF of motor neuron disease patients. Neurochem Pathol 2(1):1–6

    Article  PubMed  Google Scholar 

  59. Paul P, de Belleroche J (2014) The role of D-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Front Synaptic Neurosci 6:10. doi:10.3389/fnsyn.2014.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S et al (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci U S A 107(16):7556–7561. doi:10.1073/pnas.0914128107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) D-amino acid oxidase controls motoneuron degeneration through D-serine. Proc Natl Acad Sci U S A 109(2):627–632. doi:10.1073/pnas.1114639109

    Article  CAS  PubMed  Google Scholar 

  62. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. doi:10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  63. Carmans S, Hendriks JJ, Thewissen K, Van den Eynden J, Stinissen P, Rigo JM, Hellings N (2010) The inhibitory neurotransmitter glycine modulates macrophage activity by activation of neutral amino acid transporters. J Neurosci Res 88(11):2420–2430. doi:10.1002/jnr.22395

    CAS  PubMed  Google Scholar 

  64. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O (1991) Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. J Neurol Neurosurg Psychiatry 54(11):984–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B (1999) Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia 27(3):239–248

    Article  CAS  PubMed  Google Scholar 

  66. Lin J, Diamanduros A, Chowdhury SA, Scelsa S, Latov N, Sadiq SA (2009) Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J Neurol 256(5):774–782. doi:10.1007/s00415-009-5015-8

    Article  CAS  PubMed  Google Scholar 

  67. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80(4):616–625

    Article  CAS  PubMed  Google Scholar 

  68. Mali Y, Zisapels N (2008) Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase. Neurobiol Dis 32(1):133–141. doi:10.1016/j.nbd.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  69. D'Alessandro G, Calcagno E, Tartari S, Rizzardini M, Invernizzi RW, Cantoni L (2011) Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 43(2):346–355. doi:10.1016/j.nbd.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  70. Oladzad Abbasabadi A, Javanian A, Nikkhah M, Meratan AA, Ghiasi P, Nemat-Gorgani M (2013) Disruption of mitochondrial membrane integrity induced by amyloid aggregates arising from variants of SOD1. Int J Biol Macromol 61:212–217. doi:10.1016/j.ijbiomac.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  71. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11-12):1068–1082. doi:10.1016/j.bbadis.2006.05.002

    Article  CAS  Google Scholar 

  72. Han J, Ma L (2010) Study of the features of proton MR spectroscopy ((1)H-MRS) on amyotrophic lateral sclerosis. J Mag Reson Imaging 31(2):305–308. doi:10.1002/jmri.22053

    Article  Google Scholar 

  73. Perry TL, Hansen S, Jones K (1987) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37(12):1845–1848

    Article  CAS  PubMed  Google Scholar 

  74. Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M et al (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193(2):73–78

    Article  CAS  PubMed  Google Scholar 

  75. Blasco H, Mavel S, Corcia P, Gordon PH (2014) The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem 21(31):3551–3575

    Article  CAS  PubMed  Google Scholar 

  76. Shobha K, Vijayalakshmi K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2007) Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci 254(1-2):9–16. doi:10.1016/j.jns.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  77. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, Rothstein JD (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20(3):589–602

    Article  CAS  PubMed  Google Scholar 

  78. Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105–7116. doi:10.1074/jbc.M112.410944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39(5):676–679. doi:10.1002/ana.410390519

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107(16):7461–7466. doi:10.1073/pnas.1002459107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lora J, Alonso FJ, Segura JA, Lobo C, Marquez J, Mates JM (2004) Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem/ FEBS 271(21):4298–4306. doi:10.1111/j.1432-1033.2004.04370.x

    Article  CAS  Google Scholar 

  82. Tian C, Sun L, Jia B, Ma K, Curthoys N, Ding J, Zheng J (2012) Mitochondrial glutaminase release contributes to glutamate-mediated neurotoxicity during human immunodeficiency virus-1 infection. J Neuroimmune Pharmacol 7(3):619–628. doi:10.1007/s11481-012-9364-1

    Article  PubMed  PubMed Central  Google Scholar 

  83. Plaitakis A, Constantakakis E, Smith J (1988) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24(3):446–449. doi:10.1002/ana.410240314

    Article  CAS  PubMed  Google Scholar 

  84. Ono S, Imai T, Takahashi K, Jinnai K, Kanda F, Fukuoka Y, Hashimoto K, Shimizu N et al (1999) Alteration in amino acids in motor neurons of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 167(2):121–126

    Article  CAS  PubMed  Google Scholar 

  85. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL et al (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28(1):18–25. doi:10.1002/ana.410280106

    Article  CAS  PubMed  Google Scholar 

  86. Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z, Arreola A, Rathmell WK et al (2013) In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 17(3):372–385. doi:10.1016/j.cmet.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kemsley EK, Le Gall G, Dainty JR, Watson AD, Harvey LJ, Tapp HS, Colquhoun IJ (2007) Multivariate techniques and their application in nutrition: a metabolomics case study. Br J Nutr 98(1):1–14. doi:10.1017/s0007114507685365

    Article  CAS  PubMed  Google Scholar 

  88. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659(1-2):23–33. doi:10.1016/j.aca.2009.11.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Association ARSLA (Association pour la Recherche sur la Sclérose Latérale Amyotrophique) for its financial support. We thank Christophe Arnoult from GICC Unity Research (Génétique, Immunothérapie, Chimie et Cancer) for its technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Veyrat-Durebex.

Ethics declarations

Competing Interests

All authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 289 kb)

Fig. S1

(PDF 118 kb)

Fig. S2

(JPG 47 kb)

Fig. S3

(JPG 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veyrat-Durebex, C., Corcia, P., Piver, E. et al. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 53, 6910–6924 (2016). https://doi.org/10.1007/s12035-015-9567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9567-6

Keywords

Navigation