Skip to main content

Advertisement

Log in

Tetramethylpyrazine Ameliorates Rotenone-Induced Parkinson’s Disease in Rats: Involvement of Its Anti-Inflammatory and Anti-Apoptotic Actions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a slowly progressive neurodegenerative movement disorder. Apoptosis, neuroinflammation, and oxidative stress are the current hypothesized mechanisms for PD pathogenesis. Tetramethylpyrazine (TMP), the major bioactive component of Ligusticum wallichii Franchat (ChuanXiong), Family Apiaceae, reportedly has anti-apoptotic, anti-inflammatory and antioxidant effects. This study investigated the role of ‘TMP’ in preventing rotenone-induced neurobiological and behavioral sequelae. A preliminary dose–response study was conducted where rats received TMP (10, 20, and 40 mg/kg, i.p.) concomitantly with rotenone (2 mg/kg, s.c.) for 4 weeks. Catalepsy, locomotor activity, striatal dopamine content, and tyrosine hydroxylase “TH” and α-synuclein immunoreactivity were evaluated. The selected TMP dose (20 mg/kg) was used for western blot analysis of Bax, Bcl2, and DJ-1, immunohistochemical detection of nuclear factor kappa B (NF-кB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and glial fibrillary acidic protein (GFAP) expression, in addition to biochemical analysis of caspase-3 activity, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) levels. Results showed that TMP (20 mg/kg) significantly improved midbrain and striatal TH expression and striatal dopamine content as well as the motor deficits, compared to rotenone-treated group. These results were correlated with reduction in caspase-3 activity and α-synuclein expression, along with improvement of midbrain and striatal Bax/Bcl2 ratio compared to rotenone-treated group. TMP also attenuated rotenone-induced upregulation of Nrf2/HO-1 pathway. Furthermore, TMP downregulated rotenone-induced neuroinflammation markers: NF-кB, iNOS, COX2, and GFAP expression in both the midbrain and striatum. Taken together, the current study suggests that TMP is entitled to, at least partially, preventing PD neurobiological and behavioral deficits by virtue of its anti-apoptotic, anti-inflammatory, and antioxidant actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, et al. (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  3. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272

    Article  CAS  PubMed  Google Scholar 

  4. Migliore L, Coppedè F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 667(1):82–97

    Article  CAS  PubMed  Google Scholar 

  5. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12(11):521–528. doi:10.1016/j.molmed.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  6. Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1792(7):676–687

    Article  CAS  Google Scholar 

  7. Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, et al. (2012a) Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol 42(7):613–632

    Article  CAS  PubMed  Google Scholar 

  8. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, et al. (2003a) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

    CAS  PubMed  Google Scholar 

  9. Thakur P, Nehru B (2015a) Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson’s disease. Mol Neurobiol 51(1):209–219. doi:10.1007/s12035-014-8769-7

    Article  CAS  PubMed  Google Scholar 

  10. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003b) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179(1):9–16

    Article  CAS  PubMed  Google Scholar 

  11. Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson’s disease. Trends Neurosci 26(7):345–346. doi:10.1016/S0166-2236(03)00144-9

    Article  CAS  PubMed  Google Scholar 

  12. Xiong P, Chen X, Zhang N (2012b) Advance in studies on pathological mechanism of Parkinson’s disease and traditional Chinese medicine experiments in prevention and treatment of Parkinson’s disease. Zhongguo Zhong Yao Za Zhi 37(5):686–691

    PubMed  Google Scholar 

  13. Chun-Sheng L, Hsiao-Meng Y, Yun-Hsiang H, Chun P, Chi-Fen S (1978a) Radix Salviae miltiorrhizae and Rhizoma ligustici wallichii in coronary heart disease. Chin Med J 4(1):43–46

    CAS  PubMed  Google Scholar 

  14. Guo S, Chen K, Qian Z, Weng W, Qian M (1983) Tetramethylpyrazine in the treatment of cardiovascular and cerebrovascular diseases. Planta Medica = Journal Of Medicinal Plant Research

  15. Jiao F, Cong K, Li Y (2004) Observation on ischemic cerebrovascular disease (113 cases) treated by injection of ligustrazine. J Prac Traditi Chin Med 20:174–175

    Google Scholar 

  16. Wu W, Yu X, Luo XP, Yang SH, Zheng D (2013) Tetramethylpyrazine protects against scopolamine-induced memory impairments in rats by reversing the cAMP/PKA/CREB pathway. Behav Brain Res 253:212–216. doi:10.1016/j.bbr.2013.07.052

    Article  CAS  PubMed  Google Scholar 

  17. Cheng XR, Zhang L, Hu JJ, Sun L, Du GH (2007) Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int 31(5):438–443. doi:10.1016/j.cellbi.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Xiao X, Liu Y, Qi C, Qiu F, Chen X, Zhang J, Yang P (2010) Neuroprotection and enhanced neurogenesis by tetramethylpyrazine in adult rat brain after focal ischemia. Neurol Res 32(5):547–555. doi:10.1179/174313209X414533

    Article  CAS  PubMed  Google Scholar 

  19. Wang DQ, Wang W, Jing FC (2007) Effects of tetramethylpyrazine on brain oxidative damage induced by intracerebral perfusion of L-DOPA in rats with Parkinson’s disease. Zhongguo Zhong Xi Yi Jie He Za Zhi 27(7):629–632

    PubMed  Google Scholar 

  20. Lu C, Zhang J, Shi X, Miao S, Bi L, Zhang S, Yang Q, Zhou X, et al. (2014) Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson’s disease induced by MPTP. Int J Biol Sci 10(4):350

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang J, Xiong N, Chen C, Xiong J, Jia M, Zhang Z, Cao X, Liang Z, et al. (2011) Glyceraldehyde-3-phosphate dehydrogenase: activity inhibition and protein overexpression in rotenone models for Parkinson’s disease. Neuroscience 192:598–608. doi:10.1016/j.neuroscience.2011.06.050

    Article  CAS  PubMed  Google Scholar 

  22. Kao TK, Ou YC, Kuo JS, Chen WY, Liao SL, Wu CW, Chen CJ, Ling NN, et al. (2006) Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int 48(3):166–176. doi:10.1016/j.neuint.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  23. Kao TK, Chang CY, Ou YC, Chen WY, Kuan YH, Pan HC, Liao SL, Li GZ, et al. (2013) Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp Neurol 247:188–201. doi:10.1016/j.expneurol.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G and Watson C (1986) The rat brain in stereotaxic coordinates. San Diego, CA: Academic,

  25. Alam M, Danysz W, Schmidt WJ, Dekundy A (2009) Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol 240(2):198–207. doi:10.1016/j.taap.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  26. Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B, et al. (2009) WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 29(11):2177–2186. doi:10.1111/j.1460-9568.2009.06764.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia 34(3):233–241

    Article  CAS  PubMed  Google Scholar 

  28. Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol 552(1–3):55–66. doi:10.1016/j.ejphar.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  29. Hopwood D, Bancroft J, Stevens A (1996) Theory and practice of histological techniques. Theory and practice of histological techniques

  30. Wilson I, Gamble M (2002) Theory and practice of histological techniques.

  31. Vafaee F, Zangiabadi N, Pour FM, Dehghanian F, Asadi-Shekaari M, Afshar HK (2012) Neuroprotective effects of the immunomodulatory drug Setarud on cerebral ischemia in male rats. Neural Regen Res 7(27):2085–2091. doi:10.3969/j.issn.1673-5374.2012.27.001

    PubMed  PubMed Central  Google Scholar 

  32. Johansson AC, Hegardt P, Janelidze S, Visse E, Widegren B, Siesjö P (2002) Enhanced expression of iNOS intratumorally and at the immunization site after immunization with IFNγ-secreting rat glioma cells. J Neuroimmunol 123(1–2):135–143. doi:10.1016/S0165-5728(01)00468-4

    Article  CAS  PubMed  Google Scholar 

  33. Yuan G-J, Zhou X-R, Gong Z-J, Zhang P, Sun X-M, Zheng S-H (2006) Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury. World J Gastroenterol 12(15):2375–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zagrodzka J, Wieczorek M, Romaniuk A (1994) Social interactions in rats: behavioral and neurochemical alterations in DSP-4-treated rats. Pharmacol Biochem Behav 49(3):541–548

    Article  CAS  PubMed  Google Scholar 

  35. Chun-sheng L, Hsiao-meng Y, Yun-hsiang H, Chun P, Chi-fen S (1978b) Radix Salviae miltiorrhizae and Rhizoma ligustici wallichii in coronary heart disease. Chin Med J 4(1):43–46

    CAS  PubMed  Google Scholar 

  36. Ho WK, Wen HL, Lee CM (1989) Tetramethylpyrazine for treatment of experimentally induced stroke in Mongolian gerbils. Stroke 20(1):96–99

    Article  CAS  PubMed  Google Scholar 

  37. Shih YH, Wu SL, Chiou WF, Ku HH, Ko TL, Fu YS (2002) Protective effects of tetramethylpyrazine on kainate-induced excitotoxicity in hippocampal culture. Neuroreport 13(4):515–519

    Article  CAS  PubMed  Google Scholar 

  38. Fan L, Wang K, Shi Z, Die J, Wang C, Dang X (2011) Tetramethylpyrazine protects spinal cord and reduces inflammation in a rat model of spinal cord ischemia-reperfusion injury. J Vasc Surg 54(1):192–200. doi:10.1016/j.jvs.2010.12.030

    Article  PubMed  Google Scholar 

  39. Chang CY, Kao TK, Chen WY, Ou YC, Li JR, Liao SL, Raung SL, Chen CJ (2015) Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats. Biochem Biophys Res Commun 463(3):421–427. doi:10.1016/j.bbrc.2015.05.088

    Article  CAS  PubMed  Google Scholar 

  40. Thakur P, Nehru B (2013) Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience 231:420–431

    Article  CAS  PubMed  Google Scholar 

  41. Xiong N, Xiong J, Khare G, Chen C, Huang J, Zhao Y, Zhang Z, Qiao X, et al. (2011) Edaravone guards dopamine neurons in a rotenone model for Parkinson’s disease. PLoS One 6(6):e20677. doi:10.1371/journal.pone.0020677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sherer TB, Kim J-H, Betarbet R, Greenamyre JT (2003c) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp Neurol 179(1):9–16. doi:10.1006/exnr.2002.8072

    Article  CAS  PubMed  Google Scholar 

  43. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501. doi:10.1038/35081564

    Article  CAS  PubMed  Google Scholar 

  44. Cookson MR, van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209(1):5–11. doi:10.1016/j.expneurol.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  45. Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Mol Brain Res 134(1):18–23. doi:10.1016/j.molbrainres.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  46. Lindersson E, Beedholm R, Højrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem 279(13):12924–12934

    Article  CAS  PubMed  Google Scholar 

  47. Radad K, Hassanein K, Moldzio R, Rausch WD (2013) Vascular damage mediates neuronal and non-neuronal pathology following short and long-term rotenone administration in Sprague-Dawley rats. Exp Toxicol Pathol 65(1–2):41–47. doi:10.1016/j.etp.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  48. Abdel-Salam OM, Youness ER, Khadrawy YA, Mohammed NA, Abdel-Rahman RF, Omara EA, Sleem AA (2015) The effect of cannabis on oxidative stress and neurodegeneration induced by intrastriatal rotenone injection in rats. Comp Clin Pathol 24(2):359–378

    Article  CAS  Google Scholar 

  49. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  CAS  PubMed  Google Scholar 

  50. Hartmann A, Hunot S, Michel PP, Muriel M-P, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, et al. (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci 97(6):2875–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hartmann A, Michel PP, Troadec JD, Mouatt-Prigent A, Faucheux BA, Ruberg M, Agid Y, Hirsch EC (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J Neurochem 76(6):1785–1793

    Article  CAS  PubMed  Google Scholar 

  52. Maruyama W, Akao Y, Carrillo MC, K-i K, Youdium MBH, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24(5):675–682. doi:10.1016/S0892-0362(02)00221-0

    Article  CAS  PubMed  Google Scholar 

  53. Abdin AA, Sarhan NI (2011) Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and l-dopa toxicity. Neurosci Res 71(4):387–395. doi:10.1016/j.neures.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  54. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33(4):767–785. doi:10.1016/j.neurobiolaging.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  55. Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM (2003) The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem 87(4):914–921

    Article  CAS  PubMed  Google Scholar 

  56. Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R (2011) Agmatine effects on mitochondrial membrane potential andNF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116(1):67–75

    Article  CAS  PubMed  Google Scholar 

  57. Watabe M, Nakaki T (2007) Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 323(2):499–507

    Article  CAS  PubMed  Google Scholar 

  58. Ethell DW, Fei Q (2009) Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family. Antioxid Redox Signal 11(3):529–540

    Article  CAS  PubMed  Google Scholar 

  59. Fan L-H, Wang K-Z, Cheng B, Wang C-S, Dang X-Q (2006) Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci 7(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leng Y-F, Gao X-M, Wang S-X, Xing Y-H (2012) Effects of tetramethylpyrazine on neuronal apoptosis in the superficial dorsal horn in a rat model of neuropathic pain. The American journal of Chinese medicine 40(06):1229–1239

    Article  CAS  PubMed  Google Scholar 

  61. Juan S-H, Chen C-H, Hsu Y-H, Hou C-C, Chen T-H, Lin H, Chu Y-L, Sue Y-M (2007) Tetramethylpyrazine protects rat renal tubular cell apoptosis induced by gentamicin. Nephrology Dialysis Transplantation 22(3):732–739

    Article  CAS  Google Scholar 

  62. Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, et al. (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci 104(47):18754–18759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thakur P, Nehru B (2015b) Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson’s disease. Mol Neurobiol 51(1):209–219

    Article  CAS  PubMed  Google Scholar 

  64. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17(3):500–502

    CAS  PubMed  Google Scholar 

  65. Zhang F, Qian L, Flood PM, Shi JS, Hong JS, Gao HM (2010) Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J Pharmacol Exp Ther 333(3):822–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu J-Z, Huang J-H, Xiao Z-M, Li J-H, Li X-M, Lu H-B (2013a) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324(1–2):94–99. doi:10.1016/j.jns.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  67. Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193(2):279–290

    Article  CAS  PubMed  Google Scholar 

  68. Rogers J, Kovelowski CJ (2003) Inflammatory mechanisms in Parkinson’s disease. In: Neuroinflammation. Humana Press Inc, Totowa, pp 391–403. doi:10.1007/978-1-59259-297-5_21

  69. Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S (2010) Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson’s disease Parkinson’s disease:2011

  70. Liu H-T, Du Y-G, He J-L, Chen W-J, Li W-M, Yang Z, Wang Y-X, Yu C (2010) Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through blockade of MAPK and PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygen species. J Ethnopharmacol 129(3):335–343

    Article  CAS  PubMed  Google Scholar 

  71. Shin J-W, Moon J-Y, Seong J-W, Song S-H, Cheong Y-J, Kang C, Sohn N-W (2013) Effects of tetramethylpyrazine on microglia activation in spinal cord compression injury of mice. The American journal of Chinese medicine 41(06):1361–1376

    Article  CAS  PubMed  Google Scholar 

  72. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031

    Article  CAS  PubMed  Google Scholar 

  73. Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mazzanti M, Sul J-Y, Haydon PG (2001) Book review: glutamate on demand: astrocytes as a ready source. Neuroscientist 7(5):396–405

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77(6):1601–1610

    Article  CAS  PubMed  Google Scholar 

  76. Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4(12):991–1001

    Article  CAS  PubMed  Google Scholar 

  77. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanaka T, Kai S, Matsuyama T, Adachi T, Fukuda K, Hirota K (2013) General anesthetics inhibit LPS-induced IL-1 β expression in glial cells. PLoS One 8(12):e82930

    Article  PubMed  PubMed Central  Google Scholar 

  79. Thakur P, Nehru B (2014) Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson’s disease pathology. Neurochem Int 75:1–10

    Article  CAS  PubMed  Google Scholar 

  80. Martin HL, Santoro M, Mustafa S, Riedel G, Forrester JV, Teismann P (2015) Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson’s disease. Glia

  81. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Concetta Morale M, Marchetti B (2013) Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Current aging science 6(1):45–55

    Article  Google Scholar 

  82. Giuliani P, Ballerini P, Buccella S, Ciccarelli R, Rathbone MP, Romano S, D’Alimonte I, Caciagli F, et al. (2014) Guanosine Protects Glial Cells Against 6-Hydroxydopamine Toxicity. In: Neurotransmitter Interactions and Cognitive Function. Springer, pp 23–33

  83. Tian Y, Liu Y, Chen X, Zhang H, Shi Q, Zhang J, Yang P (2010) Tetramethylpyrazine promotes proliferation and differentiation of neural stem cells from rat brain in hypoxic condition via mitogen-activated protein kinases pathway in vitro. Neurosci Lett 474(1):26–31

    Article  CAS  PubMed  Google Scholar 

  84. Liang X, Zhou H, Ding Y, Li J, Yang C, Luo Y, Li S, Sun G, et al. (2012) TMP prevents retinal neovascularization and imparts neuroprotection in an oxygen-induced retinopathy ModelTMP blocks oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 53(4):2157–2169

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao H, Xu M-L, Zhang Q, Guo Z-H, Peng Y, Qu Z-Y, Li Y-N (2014) Tetramethylpyrazine alleviated cytokine synthesis and dopamine deficit and improved motor dysfunction in the mice model of Parkinson’s disease. Neurol Sci 35(12):1963–1967

    Article  PubMed  Google Scholar 

  86. Hu J-Z, Huang J-H, Xiao Z-M, Li J-H, Li X-M, Lu H-B (2013b) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324(1):94–99

    Article  CAS  PubMed  Google Scholar 

  87. Kumaran R, Vandrovcova J, Luk C, Sharma S, Renton A, Wood NW, Hardy JA, Lees AJ, et al. (2009) Differential DJ-1 gene expression in Parkinson’s disease. Neurobiol Dis 36(2):393–400

    Article  CAS  PubMed  Google Scholar 

  88. Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, et al. (2007) Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 101(6):1491–1504

    Article  CAS  PubMed  Google Scholar 

  89. MacKenzie EL, Ray PD, Tsuji Y (2008) Role and regulation of ferritin H in rotenone-mediated mitochondrial oxidative stress. Free Radic Biol Med 44(9):1762–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abdelsalam RM, Safar MM (2015) Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J Neurochem 133(5):700–707

    Article  CAS  PubMed  Google Scholar 

  91. Cho H-S, Kim S, Lee S-Y, Park JA, Kim S-J, Chun HS (2008) Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 29(4):656–662

    Article  CAS  PubMed  Google Scholar 

  92. Surh Y-J, Na H-K (2008) NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes & nutrition 2(4):313–317

    Article  CAS  Google Scholar 

  93. Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease.

  94. Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4(4):615–624

    Article  CAS  PubMed  Google Scholar 

  95. Cuadrado A, Rojo AI (2008) Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 14(5):429–442

    Article  CAS  PubMed  Google Scholar 

  96. Ewing J, Maines M (1991) Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein. Proc Natl Acad Sci 88(12):5364–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Investig 90(4):1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariane G. Tadros.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, H.E., Tadros, M.G., Esmat, A. et al. Tetramethylpyrazine Ameliorates Rotenone-Induced Parkinson’s Disease in Rats: Involvement of Its Anti-Inflammatory and Anti-Apoptotic Actions. Mol Neurobiol 54, 4866–4878 (2017). https://doi.org/10.1007/s12035-016-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0028-7

Keywords

Navigation