Skip to main content

Advertisement

Log in

A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Convergent evidence from genetics, symptomatology, and psychopharmacology implies that there are intrinsic connections between schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD); for example, any two or even three of these disorders could co-exist in some families. A total of 48,753 single nucleotide polymorphisms (SNPs) on chromosome 8 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type I), 177 MDD patients, and 1000 controls. Associated SNP loci were comprehensively revealed, and outstanding susceptibility genes were identified including CSMD1, NRG1, PXDNL, SGCZ, and TMEM66. Unexpectedly, flanking genes for up to 95.9 % of the associated SNPs were replicated (P ≤ 9.9E−8) in the enlarged cohort of 986 SCZ patients. Considering convergent evidence, our results implicate that bipolar disorder and major depressive disorder might be subtypes of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gottesman I II (1991) Schizophrenia genesis: the origins of madness, II edn. W. H. Freeman, New York

    Google Scholar 

  2. Lin PI, Mitchell BD (2008) Approaches for unraveling the joint genetic determinants of schizophrenia and bipolar disorder. Schizophr Bull 34(4):791–797

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rasic D, Hajek T, Alda M, Uher R (2014) Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr Bull 40(1):28–38. doi:10.1093/schbul/sbt114

    Article  PubMed  Google Scholar 

  4. Aukes MF, Laan W, Termorshuizen F, Buizer-Voskamp JE, Hennekam EA, Smeets HM, Ophoff RA, Boks MP et al (2012) Familial clustering of schizophrenia, bipolar disorder, and major depressive disorder. Genetics in medicine: official journal of the American College of Medical Genetics 14(3):338–341. doi:10.1016/gim.2011.16

    Google Scholar 

  5. Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, Degenhardt FA, Nothen MM et al (2012) Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry. doi:10.3109/15622975.2012.662282

    PubMed Central  Google Scholar 

  6. Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M (2013) The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS One 8(10):e76295. doi:10.1371/journal.pone.0076295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834. doi:10.1038/ng.171

    Article  CAS  PubMed  Google Scholar 

  8. Barcellos LF, Klitz W, Field LL, Tobias R, Bowcock AM, Wilson R, Nelson MP, Nagatomi J et al (1997) Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 61(3):734–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirov G, Nikolov I, Georgieva L, Moskvina V, Owen MJ, O’Donovan MC (2006) Pooled DNA genotyping on Affymetrix SNP genotyping arrays. BMC Genomics 7(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. APA (1994) Diagnostic and statistical manual of mental disorders, fourth edition (DSM-IV). American Psychiatric Association, Washington DC

    Google Scholar 

  11. Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P, Luan M, Yang S et al (2009) Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009:536918

    PubMed  PubMed Central  Google Scholar 

  12. Erali M, Wittwer CT High resolution melting analysis for gene scanning. Methods (San Diego, Calif) 50(4):250–261

  13. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50(7):1156–1164. doi:10.1373/clinchem.2004.032136

    Article  CAS  PubMed  Google Scholar 

  14. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15(10):1016–1022. doi:10.1038/mp.2009.49

    Article  CAS  PubMed  Google Scholar 

  15. Kraepelin E. (1883) Psychiatrie. Ein Lehrbuch fur Studierende und Ante. 1st ed. Leipzig, Germany: Barth

  16. Maatz A, Hoff P, Angst J (2015) Eugen Bleuler’s schizophrenia—a modern perspective. Dialogues Clin Neurosci 17(1):43–49

    PubMed  PubMed Central  Google Scholar 

  17. Kobayashi M, Nakatani T, Koda T, Matsumoto K, Ozaki R, Mochida N, Takao K, Miyakawa T et al (2014) Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 7:12. doi:10.1186/1756-6606-7-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bleuler E. (1908) Die Prognose der Dementia Praecox (Schizophreniegruppe. Aligemeine Zeitschrift für Psychiatrie und psychischgerichtliche Medizin. 31:436–480

  19. Heinrichs RW (2004) Meta-analysis and the science of schizophrenia: variant evidence or evidence of variants? Neurosci Biobehav Rev 28:379–394

  20. Hill MJ, Donocik JG, Nuamah RA, Mein CA, Sainz-Fuertes R, Bray NJ (2014) Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophr Res 153(1–3):225–230. doi:10.1016/j.schres.2014.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Burke JR, Hulette CM et al (2010) Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J Alzheimers Dis 19(1):69–77. doi:10.3233/JAD-2010-1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oliveira J, Busson M, Etain B, Jamain S, Hamdani N, Boukouaci W, Amokrane K, Bennabi M, et al. (2014) Polymorphism of Toll-like receptor 4 gene in bipolar disorder. J Affect Disord 152-154:395-402. doi:10.1016/j.jad.2013.09.043

  23. Moller HJ (2003) Bipolar disorder and schizophrenia: distinct illnesses or a continuum? The Journal of clinical psychiatry 64(Suppl 6):23–27 discussion 28

    PubMed  Google Scholar 

  24. Benes FM (2010) Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology 35(1):239–257. doi:10.1038/npp.2009.116

    Article  PubMed  Google Scholar 

  25. Chang LC, Jamain S, Lin CW, Rujescu D, Tseng GC, Sibille E (2014) A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies. PLoS One 9(3):e90980. doi:10.1371/journal.pone.0090980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, Cichon S, Corvin A et al (2011) High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 72(6):951–963. doi:10.1016/j.neuron.2011.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM, Garriock HA, Yokoyama JS et al (2011) Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatry 16(2):202–215. doi:10.1038/mp.2009.125

    Article  CAS  PubMed  Google Scholar 

  28. Franke B, Neale BM, Faraone SV (2009) Genome-wide association studies in ADHD. Hum Genet 126(1):13–50. doi:10.1007/s00439-009-0663-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie P, Kranzler HR, Yang C, Zhao H, Farrer LA, Gelernter J (2013) Genome-wide association study identifies new susceptibility loci for posttraumatic stress disorder. Biol Psychiatry 74(9):656–663. doi:10.1016/j.biopsych.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  30. Meda SA, Ruano G, Windemuth A, O’Neil K, Berwise C, Dunn SM, Boccaccio LE, Narayanan B et al (2014) Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A 111(19):E2066–E2075. doi:10.1073/pnas.1313093111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bowden NA, Scott RJ, Tooney PA (2008) Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics 9:199. doi:10.1186/1471-2164-9-199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mick E, McGough J, Deutsch CK, Frazier JA, Kennedy D, Goldberg RJ (2014) Genome-wide association study of proneness to anger. PLoS One 9(1):e87257. doi:10.1371/journal.pone.0087257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Barreto RA, Walker FR, Dunkley PR, Day TA, Smith DW (2012) Fluoxetine prevents development of an early stress-related molecular signature in the rat infralimbic medial prefrontal cortex. Implications for depression? BMC Neurosci 13:125. doi:10.1186/1471-2202-13-125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, Shianna KV, Yoon W et al (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5(2):e1000373. doi:10.1371/journal.pgen.1000373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Glatt SJ, Stone WS, Nossova N, Liew CC, Seidman LJ, Tsuang MT (2011) Similarities and differences in peripheral blood gene-expression signatures of individuals with schizophrenia and their first-degree biological relatives. Am J Med Genet B Neuropsychiatr Genet 156B(8):869–887. doi:10.1002/ajmg.b.31239

    Article  PubMed  CAS  Google Scholar 

  36. Guillemin C, Provencal N, Suderman M, Cote SM, Vitaro F, Hallett M, Tremblay RE, Szyf M (2014) DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS One 9(1):e86822. doi:10.1371/journal.pone.0086822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Eisinger BE, Driessen TM, Zhao C, Gammie SC (2014) Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype. Front Behav Neurosci 8:110. doi:10.3389/fnbeh.2014.00110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carvalho LA, Bergink V, Sumaski L, Wijkhuijs J, Hoogendijk WJ, Birkenhager TK, Drexhage HA (2014) Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder. Transl Psychiatry 4:e344. doi:10.1038/tp.2013.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Squillario M, Barla A (2011) A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer’s as a case study. BMC Med Genet 4:55. doi:10.1186/1755-8794-4-55

    Google Scholar 

  40. Stewart LR, Hall AL, Kang SH, Shaw CA, Beaudet AL (2011) High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy. BMC Med Genet 12:154. doi:10.1186/1471-2350-12-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M (2011) Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43(9):864–868. doi:10.1038/ng.902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clarke RA, Lee S, Eapen V (2012) Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including autism. Transl Psychiatry 2:e158. doi:10.1038/tp.2012.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blake DJ, Forrest M, Chapman RM, Tinsley CL, O’Donovan MC, Owen MJ (2010) TCF4, schizophrenia, and Pitt-Hopkins Syndrome. Schizophr Bull 36(3):443–447. doi:10.1093/schbul/sbq035

    Article  PubMed  PubMed Central  Google Scholar 

  44. Surget A, Wang Y, Leman S, Ibarguen-Vargas Y, Edgar N, Griebel G, Belzung C, Sibille E (2009) Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34(6):1363–1380. doi:10.1038/npp.2008.76

    Article  CAS  PubMed  Google Scholar 

  45. Onuma Y, Watanabe A, Aburatani H, Asashima M, Whitman M (2008) TRIQK, a novel family of small proteins localized to the endoplasmic reticulum membrane, is conserved across vertebrates. Zool Sci 25(7):706–713. doi:10.2108/zsj.25.706

    Article  CAS  PubMed  Google Scholar 

  46. Jia P, Wang L, Fanous AH, Pato CN, Edwards TL, International Schizophrenia C, Zhao Z (2012) Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia. PLoS Comput Biol 8(7):e1002587. doi:10.1371/journal.pcbi.1002587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zandi PP, Zollner S, Avramopoulos D, Willour VL, Chen Y, Qin ZS, Burmeister M, Miao K et al (2008) Family-based SNP association study on 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 147B(5):612–618. doi:10.1002/ajmg.b.30651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ukkola-Vuoti L, Kanduri C, Oikkonen J, Buck G, Blancher C, Raijas P, Karma K, Lahdesmaki H et al (2013) Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One 8(2):e56356. doi:10.1371/journal.pone.0056356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prasad A, Merico D, Thiruvahindrapuram B, Wei J, Lionel AC, Sato D, Rickaby J, Lu C et al (2012) A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda) 2(12):1665–1685. doi:10.1534/g3.112.004689

    Article  CAS  Google Scholar 

  50. Mozhui K, Wang X, Chen J, Mulligan MK, Li Z, Ingles J, Chen X, Lu L et al (2011) Genetic regulation of Nrxn1 [corrected] expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry 1:e25. doi:10.1038/tp.2011.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez Ravetti M, Rosso OA, Berretta R, Moscato P (2010) Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease. PLoS One 5(4):e10153. doi:10.1371/journal.pone.0010153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Martin J, Cooper M, Hamshere ML, Pocklington A, Scherer SW, Kent L, Gill M, Owen MJ et al (2014) Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: evidence from copy number variants. J Am Acad Child Adolesc Psychiatry 53(7):761–770 . doi:10.1016/j.jaac.2014.03.004e726

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chadwick W, Brenneman R, Martin B, Maudsley S (2010) Complex and multidimensional lipid raft alterations in a murine model of Alzheimer’s disease. Int J Alzheimers Dis 2010:604792. doi:10.4061/2010/604792

    PubMed  PubMed Central  Google Scholar 

  54. Wu JQ, Wang X, Beveridge NJ, Tooney PA, Scott RJ, Carr VJ, Cairns MJ (2012) Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia. PLoS One 7(4):e36351. doi:10.1371/journal.pone.0036351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martins-de-Souza D (2014) Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues Clin Neurosci 16(1):63–73

    PubMed  PubMed Central  Google Scholar 

  56. Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Rahmoune H, Bahn S (2012) Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci 262(8):657–666. doi:10.1007/s00406-012-0301-3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cheng C, Chiu HJ, Loh el W, Chan CH, Hwu TM, Liu YR, Lan TH (2012) Association of the ADRA1A gene and the severity of metabolic abnormalities in patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 36(1):205–210. doi:10.1016/j.pnpbp.2011.10.011

    Article  CAS  Google Scholar 

  58. Doze VA, Handel EM, Jensen KA, Darsie B, Luger EJ, Haselton JR, Talbot JN, Rorabaugh BR (2009) Alpha(1A)- and alpha(1B)-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse. Brain Res 1285:148–157. doi:10.1016/j.brainres.2009.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schijndel JE, Martens GJ (2010) Gene expression profiling in rodent models for schizophrenia. Curr Neuropharmacol 8(4):382–393. doi:10.2174/157015910793358132

    Article  PubMed  PubMed Central  Google Scholar 

  60. Christensen T, Jensen L, Bouzinova EV, Wiborg O (2013) Molecular profiling of the lateral habenula in a rat model of depression. PLoS One 8(12):e80666. doi:10.1371/journal.pone.0080666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, Thomas EA (2008) Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 1239:235–248. doi:10.1016/j.brainres.2008.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18(17):3227–3243. doi:10.1093/hmg/ddp261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, Chen L, Wang GZ et al (2012) Human-specific transcriptional networks in the brain. Neuron 75(4):601–617. doi:10.1016/j.neuron.2012.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Glessner JT, Hakonarson H (2009) Common variants in polygenic schizophrenia. Genome Biol 10(9):236. doi:10.1186/gb-2009-10-9-236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–757. doi:10.1038/nature08192

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wefers B, Hitz C, Holter SM, Trumbach D, Hansen J, Weber P, Putz B, Deussing JM et al (2012) MAPK signaling determines anxiety in the juvenile mouse brain but depression-like behavior in adults. PLoS One 7(4):e35035. doi:10.1371/journal.pone.0035035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, Kuss A, Humphrey N et al (2009) CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5(5):e1000487. doi:10.1371/journal.pgen.1000487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, Kendler KS, O’Donovan MC et al (2013) Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 9(4):e1003455. doi:10.1371/journal.pgen.1003455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM (2011) RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 6(9):e23356. doi:10.1371/journal.pone.0023356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dow HC, Kreibich AS, Kaercher KA, Sankoorikal GM, Pauley ED, Lohoff FW, Ferraro TN, Li H et al (2011) Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice. Genes Brain Behav 10(1):57–68. doi:10.1111/j.1601-183X.2010.00640.x

    Article  CAS  PubMed  Google Scholar 

  71. Kang C, Zhou L, Liu H, Yang J (2011) Association study of the frizzled 3 gene with Chinese Va schizophrenia. Neurosci Lett 505(2):196–199. doi:10.1016/j.neulet.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Yu X, Yuan Y, Ling Y, Ruan Y, Si T, Lu T, Wu S et al (2004) Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 129B(1):16–19. doi:10.1002/ajmg.b.30076

    Article  PubMed  Google Scholar 

  73. Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X, Zhang H, Kong Q et al (2003) Association study of the human FZD3 locus with schizophrenia. Biol Psychiatry 54(11):1298–1301

    Article  CAS  PubMed  Google Scholar 

  74. Katsu T, Ujike H, Nakano T, Tanaka Y, Nomura A, Nakata K, Takaki M, Sakai A et al (2003) The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett 353(1):53–56

    Article  CAS  PubMed  Google Scholar 

  75. Wulff H, Zhorov BS (2008) K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 108(5):1744–1773. doi:10.1021/cr078234p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sibille E, Wang Y, Joeyen-Waldorf J, Gaiteri C, Surget A, Oh S, Belzung C, Tseng GC et al (2009) A molecular signature of depression in the amygdala. Am J Psychiatry 166(9):1011–1024. doi:10.1176/appi.ajp.2009.08121760

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M (2006) Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 70(3):221–227. doi:10.1016/j.brainresbull.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  78. Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, Brown C, Egeland JA et al (2014) Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet 10(3):e1004229. doi:10.1371/journal.pgen.1004229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Djurovic S, Gustafsson O, Mattingsdal M, Athanasiu L, Bjella T, Tesli M, Agartz I, Lorentzen S et al (2010) A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample. J Affect Disord 126(1–2):312–316. doi:10.1016/j.jad.2010.04.007

    Article  PubMed  Google Scholar 

  80. Glatt SJ, Chandler SD, Bousman CA, Chana G, Lucero GR, Tatro E, May T, Lohr JB et al (2009) Alternatively spliced genes as biomarkers for schizophrenia, bipolar disorder and psychosis: a blood-based spliceome-profiling exploratory study. Curr Pharmacogenomics Person Med 7(3):164–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsang KM, Croen LA, Torres AR, Kharrazi M, Delorenze GN, Windham GC, Yoshida CK, Zerbo O et al (2013) A genome-wide survey of transgenerational genetic effects in autism. PLoS One 8(10):e76978. doi:10.1371/journal.pone.0076978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Latourelle JC, Dumitriu A, Hadzi TC, Beach TG, Myers RH (2012) Evaluation of Parkinson disease risk variants as expression-QTLs. PLoS One 7 (10):e46199. doi:10.1371/journal.pone.0046199

  83. Glancy M, Barnicoat A, Vijeratnam R, de Souza S, Gilmore J, Huang S, Maloney VK, Thomas NS et al (2009) Transmitted duplication of 8p23.1-8p23.2 associated with speech delay, autism and learning difficulties. Eur J Hum Genet 17(1):37–43. doi:10.1038/ejhg.2008.133

    Article  CAS  PubMed  Google Scholar 

  84. Tsika E, Moore DJ (2013) Contribution of GTPase activity to LRRK2-associated Parkinson disease. Small GTPases 4(3):164–170. doi:10.4161/sgtp.25130

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS et al (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5(10):1613–1634. doi:10.1002/emmm.201201974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ross KA (2011) Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn’s disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 9:12. doi:10.1186/1741-7015-9-12

    Article  PubMed  PubMed Central  Google Scholar 

  87. Werling DM, Lowe JK, Luo R, Cantor RM, Geschwind DH (2014) Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder. Mol Autism 5(1):13. doi:10.1186/2040-2392-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, Kucherlapati R, Malhotra AK (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci U S A 104(50):19942–19947. doi:10.1073/pnas.0710021104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sherva R, Farrer LA (2011) Power and pitfalls of the genome-wide association study approach to identify genes for Alzheimer’s disease. Curr Psychiatry Rep 13(2):138–146. doi:10.1007/s11920-011-0184-4

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang P, Xiang N, Chen Y, Sliwerska E, McInnis MG, Burmeister M, Zollner S (2010) Family-based association analysis to finemap bipolar linkage peak on chromosome 8q24 using 2,500 genotyped SNPs and 15,000 imputed SNPs. Bipolar Disord 12(8):786–792. doi:10.1111/j.1399-5618.2010.00883.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McDonald ML, MacMullen C, Liu DJ, Leal SM, Davis RL (2012) Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry 2:e169. doi:10.1038/tp.2012.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maffioletti E, Tardito D, Gennarelli M, Bocchio-Chiavetto L (2014) Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci 8:75. doi:10.3389/fncel.2014.00075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Xu B, Hsu PK, Karayiorgou M, Gogos JA (2012) MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 46(2):291–301. doi:10.1016/j.nbd.2012.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anglin R (2016) Mitochondrial dysfunction in psychiatric illness. Can J Psychiatry 61(8):444–445. doi:10.1177/0706743716646361

    Article  PubMed  PubMed Central  Google Scholar 

  95. Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, Hesselbrock V, Kramer J, Kuperman S et al (2012) Genome-wide association study of comorbid depressive syndrome and alcohol dependence. Psychiatr Genet 22(1):31–41. doi:10.1097/YPG.0b013e32834acd07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Glessner JT, Wang K, Sleiman PM, Zhang H, Kim CE, Flory JH, Bradfield JP, Imielinski M et al (2010) Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder. PLoS One 5(12):e15463. doi:10.1371/journal.pone.0015463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schosser A, Butler AW, Ising M, Perroud N, Uher R, Ng MY, Cohen-Woods S, Craddock N et al (2011) Genomewide association scan of suicidal thoughts and behaviour in major depression. PLoS One 6(7):e20690. doi:10.1371/journal.pone.0020690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Calcagno B, Eyles D, van Alphen B, van Swinderen B (2013) Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia. Transl Psychiatry 3:e206. doi:10.1038/tp.2012.139

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Driessen TM, Eisinger BE, Zhao C, Stevenson SA, Saul MC, Gammie SC (2014) Genes showing altered expression in the medial preoptic area in the highly social maternal phenotype are related to autism and other disorders with social deficits. BMC Neurosci 15:11. doi:10.1186/1471-2202-15-11

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kekesi KA, Juhasz G, Simor A, Gulyassy P, Szego EM, Hunyadi-Gulyas E, Darula Z, Medzihradszky KF et al (2012) Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One 7(12):e50532. doi:10.1371/journal.pone.0050532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vazquez J, Hall SC, Greco MA (2009) Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 1298:37–45. doi:10.1016/j.brainres.2009.08.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dayan CM, Panicker V (2013) Hypothyroidism and depression. Eur Thyroid J 2(3):168–179. doi:10.1159/000353777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duntas LH, Maillis A (2013) Hypothyroidism and depression: salient aspects of pathogenesis and management. Minerva Endocrinol 38(4):365–377

    CAS  PubMed  Google Scholar 

  104. Gotter AL, Santarelli VP, Doran SM, Tannenbaum PL, Kraus RL, Rosahl TW, Meziane H, Montial M et al (2011) TASK-3 as a potential antidepressant target. Brain Res 1416:69–79. doi:10.1016/j.brainres.2011.08.021

    Article  CAS  PubMed  Google Scholar 

  105. Steen VM, Nepal C, Ersland KM, Holdhus R, Naevdal M, Ratvik SM, Skrede S, Havik B (2013) Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One 8(11):e79501. doi:10.1371/journal.pone.0079501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Distler MG, Opal MD, Dulawa SC, Palmer AA (2012) Assessment of behaviors modeling aspects of schizophrenia in Csmd1 mutant mice. PLoS One 7(12):e51235. doi:10.1371/journal.pone.0051235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu W, Cohen-Woods S, Chen Q, Noor A, Knight J, Hosang G, Parikh SV, De Luca V et al (2014) Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Med Genet 15:2. doi:10.1186/1471-2350-15-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lydall GJ, Bass NJ, McQuillin A, Lawrence J, Anjorin A, Kandaswamy R, Pereira A, Guerrini I et al (2011) Confirmation of prior evidence of genetic susceptibility to alcoholism in a genome-wide association study of comorbid alcoholism and bipolar disorder. Psychiatr Genet 21(6):294–306. doi:10.1097/YPG.0b013e32834915c2

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892. doi:10.1086/342734

    Article  PubMed  PubMed Central  Google Scholar 

  110. Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D, Zaharieva I, Toncheva D et al (2008) Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry 64(5):419–427. doi:10.1016/j.biopsych.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  111. Thomson PA, Christoforou A, Morris SW, Adie E, Pickard BS, Porteous DJ, Muir WJ, Blackwood DH et al (2007) Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 12(1):94–104. doi:10.1038/sj.mp.4001889

    Article  CAS  PubMed  Google Scholar 

  112. Zuo L, Zhang F, Zhang H, Zhang XY, Wang F, Li CS, Lu L, Hong J et al (2012) Genome-wide search for replicable risk gene regions in alcohol and nicotine co-dependence. Am J Med Genet B Neuropsychiatr Genet 159B(4):437–444. doi:10.1002/ajmg.b.32047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu X, Cheng R, Ye X, Verbitsky M, Kisselev S, Mejia-Santana H, Louis E, Cote L et al (2013) Increased rate of sporadic and recurrent rare genic copy number variants in Parkinson’s disease among Ashkenazi Jews. Mol Genet Genomic Med 1(3):142–154. doi:10.1002/mgg3.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Czeredys M, Gruszczynska-Biegala J, Schacht T, Methner A, Kuznicki J (2013) Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington’s disease. Front Mol Neurosci 6:42. doi:10.3389/fnmol.2013.00042

  115. Twine NA, Janitz K, Wilkins MR, Janitz M (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 6(1):e16266. doi:10.1371/journal.pone.0016266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the patients and controls who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Written consent was obtained from all subjects or legally authorized representative consented on the behalf of participants. This study was approved by the Ethics Committee of the Institute of Basic Medicine of Shandong Academy of Medical Sciences.

Financial Disclosures

This study was supported by grants from the Natural Science Foundation of Shandong Province (Grant Nos. ZR2013HM078, Z2008C11, Z2004C10), the Shandong Province Science and Technology Development Plan (Grant No. 2011GSF11821), the National High-tech R&D Program of China (863 Program Grant No. 2002AA223021), The National Natural Science Foundation of China (Grant Nos. 30770780, 30440042), Ministry of Human Resources and Social Security of China (Grant No. 2009.416), the Department of Science and Technology of Shandong Province (Grant No. 2008GG27C01011-8), the National Bureau of Foreign Experts Affairs (Grant No. CG2006370002), the Shandong Bureau of Foreign Experts Affairs (Grant No. L20063700407, and the Shandong Academy of Medical Sciences Grant Nos. 2012-25, 2009-15).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

The P- value plot of of single nucleotide polymorphisms (SNPs) on Chromosome 8 from the the analysis of 119 schizophrenia (SCZ) patients and 1000 controls in a Genome-wide Association Study by Affymetrix Genome-Wide Human SNP array 6.0 in the population of Shandong province of China. (DOCX 145 kb)

ESM 2

The P- value plot of of single nucleotide polymorphisms (SNPs) on Chromosome 8 from the the analysis of 253 bipolar disorder (BPD) patients and 1000 controls in a Genome-wide Association Study by Affymetrix Genome-Wide Human SNP array 6.0 in the population of Shandong province of China. (DOCX 152 kb)

ESM 3

The P- value plot of of single nucleotide polymorphisms (SNPs) on Chromosome 8 from the the analysis of 177 major depressive disorder (MDD) patients and 1000 controls in a Genome-wide Association Study by Affymetrix Genome-Wide Human SNP array 6.0 in the population of Shandong province of China. (DOCX 148 kb)

ESM 4

(XLSB 2129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Long, F., Cai, B. et al. A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen. Mol Neurobiol 54, 5868–5882 (2017). https://doi.org/10.1007/s12035-016-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0102-1

Keywords

Navigation