Skip to main content

Advertisement

Log in

Molecular and Therapeutic Targets of Genistein in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating brain disorder characterized by an increased level of amyloid-beta (Aβ) peptide deposition and neuronal cell death leading to an impairment of learning and thinking skills. The Aβ deposition is a key factor in senile plaques of the AD brain which cause the elevation of intracellular calcium ions and the production of formidable free radicals, both of which greatly contribute to the AD-associated cascade, leading to unstoppable neuronal loss in the hippocampal region of the brain. Natural products are currently considered as an alternative strategy for the discovery of novel multipotent drugs against AD. They include the naturally occurring dietary soy isoflavone genistein which has been recognized to possess several health-promoting effects. Genistein has been mainly focused because of its potential on amelioration of Aβ-induced impairment and its antioxidant capacity to scavenge the free radicals produced in AD. It can also directly interact with the targeted signaling proteins and stabilize their activity to prevent AD. An improved understanding of the direct interactions between genistein and target proteins would contribute to the further development of AD treatment. This review mainly focuses on molecular targets and the therapeutic effects regulated by genistein, which has the ability to directly target the Aβ peptide and to control its activity involved in intracellular signaling pathways, which otherwise would lead to neuronal death in the hippocampal region of the AD brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yoo KY, Park SY (2012) Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 17(3):3524–3538

    Article  CAS  PubMed  Google Scholar 

  2. Geldmacher DS (2007) Treatment guidelines for Alzheimer’s disease: redefining perceptions in primary care. Prim Care Companion J Clin Psychiatry 9(2):113–121

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmitt FA, Wichems CH (2006) A systematic review of assessment and treatment of moderate to severe Alzheimer’s disease. Prim Care Companion J Clin Psychiatry 8(3):158–159

    Article  PubMed  PubMed Central  Google Scholar 

  4. Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827

    Article  CAS  PubMed  Google Scholar 

  5. Mecocci P, Bladström A, Stender K (2009) Effects of memantine on cognition in patients with moderate to severe Alzheimer’s disease: post-hoc analyses of ADAS-cog and SIB total and single-item scores from six randomized, double-blind, placebo-controlled studies. Int J Geriatr Psychiatry 24(5):532–538

    Article  PubMed  Google Scholar 

  6. Deardorff WJ, Feen E, Grossberg GT (2015) The use of cholinesterase inhibitors across all stages of Alzheimer’s disease. Drugs Aging 32(7):537–547

    Article  CAS  PubMed  Google Scholar 

  7. Doody R, Stevens J, Beck C, Dubinsky R, Kaye J, Gwyther L, Mohs RC, Thal LJ et al (2001) Practice parameter: management of dementia (an evidence-based review) report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9):1154–1166

    Article  CAS  PubMed  Google Scholar 

  8. Rafii MS, Aisen PS (2009) Recent developments in Alzheimer’s disease therapeutics. BMC Med 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martorell M, Forman K, Castro N, Capó X, Tejada S, Sureda A (2016) Potential therapeutic effects of oleuropein aglycone in Alzheimer’s disease. Curr Pharm Biotechnol 17(11):994–1001

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42

    Article  Google Scholar 

  12. Lampe JW (2003) Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr 133(3):956S–964S

    CAS  PubMed  Google Scholar 

  13. Abdallah HH, Mavri J, Repič M, Lee VS, Wahab HA (2012) Chemical reaction of soybean flavonoids with DNA: a computational study using the implicit solvent model. Int J Mol Sci 13(2):1269–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 161(9):1161–1172

    Article  CAS  PubMed  Google Scholar 

  15. Xi YD, Li XY, Ding J, Yu HL, Ma WW, Yuan LH, Wu J, Xiao R (2013) Soy isoflavone alleviates Aβ1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue. Curr Neurovasc Res 10(2):144–156

    Article  CAS  PubMed  Google Scholar 

  16. Xi YD, Li XY, Yu HL, Jing H, Ma WW, Yuan LH, Zhang DD, Wu J et al (2014) Soy isoflavone antagonizes the oxidative cerebrovascular injury induced by β-amyloid peptides 1–42 in rats. Neurochem Res 39(7):1374–1381

    Article  CAS  PubMed  Google Scholar 

  17. Xu ML, Liu J, Zhu C, Gao Y, Zhao S, Liu W, Zhang Y (2015) Interactions between soy isoflavones and other bioactive compounds: a review of their potentially beneficial health effects. Phytochem Rev 14(3):459–467

    Article  CAS  Google Scholar 

  18. Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60(3):205–211

    Article  CAS  PubMed  Google Scholar 

  19. Zubik L, Meydani M (2003) Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am J Clin Nutr 77(6):1459–1465

    CAS  PubMed  Google Scholar 

  20. Xu X, Wang HJ, Murphy PA, Hendrich S (2000) Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. J Nutr 130(4):798–801

    CAS  PubMed  Google Scholar 

  21. Liggins J, Bluck LJ, Runswick S, Atkinson C, Coward WA, Bingham SA (2000) Daidzein and genistein content of fruits and nuts. J Nutr Biochem 11(6):326–331

    Article  CAS  PubMed  Google Scholar 

  22. Murphy PA, Wang HJ (1993) Antiproliferative effect of genistein and adriamycin against estrogen-dependent and -independent human breast carcinoma cell lines. Total genistein, daidzein and glycitein content of soyfoods presented to the 18th National Nutrient Databank Conference Baton Rouge, LA

  23. BCERC COTC fact sheet—early life exposure to the phytoestrogen genistein and breast cancer risk in later years; Phytoestrogen Daidzein, 11/07/2007

  24. Bhagwat S, Haytowitz DB, Holden JM (2008) USDA database for the isoflavone content of selected foods release 2.0. US Department of Agriculture, Maryland, p. 15

    Google Scholar 

  25. Liu R, Hu Y, Li J, Lin Z (2007) Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng 9(1):1–7

    Article  PubMed  CAS  Google Scholar 

  26. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  27. Park YK, Aguiar CL, Alencar SM, Mascarenhas HAA, Scamparini ARP (2002) Conversion of malonyl-beta-glycoside isoflavones into glycoside isoflavones in brazilian soybeans. Food Sci Technol 22(2):130–135

    CAS  Google Scholar 

  28. Supko JG, Malspeis L (1995) Plasma pharmacokinetics of genistein in mice. Int J Oncol 7(4):847–854

    CAS  PubMed  Google Scholar 

  29. Yang Z, Kulkarni K, Zhu W, Hu M (2012) Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti Cancer Agents Med Chem 12(10):1264–1280

    Article  CAS  Google Scholar 

  30. Piskula MK, Yamakoshi J, Iwai Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett 447(2):287–291

    Article  CAS  PubMed  Google Scholar 

  31. Steensma A, Faassen-Peters MA, Noteborn HP, Rietjens IM (2006) Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. J Agric Food Chem 54(21):8006–8012

    Article  CAS  PubMed  Google Scholar 

  32. Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutri 76(2):447–453

    CAS  Google Scholar 

  33. Fischer L, Mahoney C, Jeffcoat AR, Koch MA, Thomas BF, Valentine JL, Stinchcombe T, Boan J et al (2004) Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer 48(2):160–170

    Article  CAS  PubMed  Google Scholar 

  34. Clarke DB, Lloyd AS, Botting NP, Oldfield MF, Needs PW, Wiseman H (2002) Measurement of intact sulfate and glucuronide phytoestrogen conjugates in human urine using isotope dilution liquid chromatography-tandem mass spectrometry with [13C3] isoflavone internal standards. Anal Biochem 309(1):158–172

    Article  CAS  PubMed  Google Scholar 

  35. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1):230S–242S

    CAS  PubMed  Google Scholar 

  36. Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A et al (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131(4):1362S–1375S

    CAS  PubMed  Google Scholar 

  37. Rowland I, Faughnan M, Hoey L, Wähälä K, Williamson G, Cassidy A (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89(S1):S45–S58

    CAS  PubMed  Google Scholar 

  38. Messina M, McCaskill-Stevens W, Lampe JW (2006) Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 98(18):1275–1284

    Article  PubMed  Google Scholar 

  39. Center of Disease Control and prevention (2005) Third national report on human exposure to environmental chemicals: executive summary. Third national report on human exposure to environmental chemicals: executive summary. NCEH; 2005

  40. Nabavi SF, Daglia M, Tundis R, Rosa Loizzo M, Sobarzo-Sanchez E, Erdogan Orhan I, Nabavi SM (2015) Genistein: a boon for mitigating ischemic stroke. Curr topics med chem 15(17):1714–1721

    Article  CAS  Google Scholar 

  41. Ganai AA, Farooqi H (2015) Bioactivity of genistein: a review of in vitro and in vivo studies. Biomed Pharmacother 76:30–38

    Article  CAS  PubMed  Google Scholar 

  42. Kim IG, Kim JS, Lee JH, Cho EW (2014) Genistein decreases cellular redox potential, partially suppresses cell growth in HL-60 leukemia cells and sensitizes cells to γ-radiation-induced cell death. Mol Med Rep 10(6):2786–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S-i, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595

    CAS  PubMed  Google Scholar 

  44. Wei H, Bowen R, Cai Q, Barnes S, Wang Y (1995) Antioxidant and antipromotional effects of the soybean isoflavone genistein. Exp Biol Med 208(1):124–130

    Article  CAS  Google Scholar 

  45. Park YJ, Jang YM, Kwon YH (2009) Isoflavones prevent endoplasmic reticulum stress-mediated neuronal degeneration by inhibiting tau hyperphosphorylation in SH-SY5Y cells. J Med Food 12(3):528–535

    Article  CAS  PubMed  Google Scholar 

  46. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci 90(7):2690–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soni M, White L, Kridawati A, Bandelow S, Hogervorst E (2016) Phytoestrogen consumption and risk for cognitive decline and dementia: with consideration of thyroid status and other possible mediators. J Steroid Biochem Mol Biol 160:67–77

    Article  CAS  PubMed  Google Scholar 

  48. Lephart ED, West TW, Weber KS, Rhees RW, Setchell KD, Adlercreutz H, Lund TD (2002) Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol 24(1):5–16

    Article  CAS  PubMed  Google Scholar 

  49. Bansal N, Parle M (2010) Soybean supplementation helps reverse age-and scopolamine-induced memory deficits in mice. J Med Food 13(6):1293–1300

    Article  CAS  PubMed  Google Scholar 

  50. Safahani M, Amani R, Aligholi H, Sarkaki A, Badavi M, Zand Moghaddam A, Haghighizadeh MH (2011) Effect of different doses of soy isoflavones on spatial learning and memory in ovariectomized rats. Basic Clin Neurosci 2(4):12–18

    Google Scholar 

  51. Omoni AO, Aluko RE (2005) Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 63(8):272–283

    Article  PubMed  Google Scholar 

  52. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP et al (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6(4):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang TT, Sathyamoorthy N, Phang JM (1996) Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17(2):271–275

    Article  PubMed  Google Scholar 

  54. Mazumder MAR, Hongsprabhas P (2016) Genistein as antioxidant and antibrowning agents in in vivo and in vitro: a review. Biomedicine Pharmacother 82:379–392

    Article  CAS  Google Scholar 

  55. Wiegand H, Wagner AE, Boesch-Saadatmandi C, Kruse HP, Kulling S, Rimbach G (2009) Effect of dietary genistein on phase II and antioxidant enzymes in rat liver. Cancer Genomics-Proteomics 6(2):85–92

    CAS  PubMed  Google Scholar 

  56. Suzuki K, Koike H, Matsui H, Ono Y, Hasumi M, Nakazato H, Okugi H, Sekine Y et al (2002) Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int J Cancer 99(6):846–852

    Article  CAS  PubMed  Google Scholar 

  57. López T, López S, Arias CF (2015) The tyrosine kinase inhibitor genistein induces the detachment of rotavirus particles from the cell surface. Virus Res 210:141–148

    Article  PubMed  CAS  Google Scholar 

  58. Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogawara H, Akiyama T, Watanabe SI, Ito N, Kobori M, Seoda Y (1989) Inhibition of tyrosine protein kinase activity by synthetic isoflavones and flavones. J Antibiotics 42(2):340–343

    Article  CAS  Google Scholar 

  60. Pan Y, Anthony M, Clarkson TB (1999) Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Exp Biol Med 221(2):118–125

    Article  CAS  Google Scholar 

  61. File SE, Hartley DE, Alom N, Rattray M (2003) Soya phytoestrogens change cortical and hippocampal expression of BDNF mRNA in male rats. Neurosci Lett 338(2):135–138

    Article  CAS  PubMed  Google Scholar 

  62. File SE, Jarrett N, Fluck E, Duffy R, Casey K, Wiseman H (2001) Eating soya improves human memory. Psychopharmacology 157(4):430–436

    Article  CAS  PubMed  Google Scholar 

  63. Bagheri M, Joghataei MT, Mohseni S, Roghani M (2011) Genistein ameliorates learning and memory deficits in amyloid β (1–40) rat model of Alzheimer’s disease. Neurobiol Learn Mem 95(3):270–276

    Article  CAS  PubMed  Google Scholar 

  64. Chan WH, Yu JS (2000) Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A 431 cells by genistein. J Cell Biochem 78(1):73–84

    Article  CAS  PubMed  Google Scholar 

  65. Kurzer MS, Xu X (1997) Dietary phytoestrogens. Ann Rev Nutr 17(1):353–381

    Article  CAS  Google Scholar 

  66. Andersen JM, Myhre O, Fonnum F (2003) Discussion of the role of the extracellular signal-regulated kinase-phospholipase A2 pathway in production of reactive oxygen species in Alzheimer’s disease. Neurochem Res 28(2):319–326

    Article  PubMed  Google Scholar 

  67. Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates β-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radical Bio Med 36(2):180–188

    Article  CAS  Google Scholar 

  68. Zhao L, Woody SK, Chhibber A (2015) Estrogen receptor β in Alzheimer’s disease: from mechanisms to therapeutics. Ageing Res Rev 24:178–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bang OY, Hong HS, Kim DH, Kim H, Boo JH, Huh K, Mook-Jung I (2004) Neuroprotective effect of genistein against beta amyloid-induced neurotoxicity. Neurobiol DisN 16(1):21–28

    Article  CAS  Google Scholar 

  70. Morán J, Garrido P, Alonso A, Cabello E, González C (2013) 17β-estradiol and genistein acute treatments improve some cerebral cortex homeostasis aspects deteriorated by aging in female rats. Exp Gerontol 48(4):414–421

    Article  PubMed  CAS  Google Scholar 

  71. Donzelli A, Braida D, Finardi A, Capurro V, Valsecchi AE, Colleoni M, Sala M (2010) Neuroprotective effects of genistein in mongolian gerbils: estrogen receptor-. BETA. Involvement. J Pharmacol Sci 114(2):158–167

    Article  CAS  PubMed  Google Scholar 

  72. Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271(31):18295–18298

    Article  CAS  PubMed  Google Scholar 

  73. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1, 2. Free Radic Biol Med 32(11):1050–1060

    Article  CAS  PubMed  Google Scholar 

  74. Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314(5800):781–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kim C, Ye F, Ginsberg MH (2011) Regulation of integrin activation. Ann Rev Cell Dev Biol 27:321–345

    Article  CAS  Google Scholar 

  76. Liao W, Jin G, Zhao M, Yang H (2013) The effect of genistein on the content and activity of α-and β-secretase and protein kinase c in aβ-injured hippocampal neurons. Basic clin pharmacol toxicol 112(3):182–185

    Article  CAS  PubMed  Google Scholar 

  77. Okumura N, Yoshida H, Nishimura Y, Murakami M, Kitagishi Y, Matsuda S (2012) Genistein downregulates presenilin 1 and ubiquilin 1 expression. Mol Med Rep 5(2):559–561

    CAS  PubMed  Google Scholar 

  78. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42:S125–S152

    PubMed  Google Scholar 

  79. Ma W, Yuan L, Yu H, Ding B, Xi Y, Feng J, Xiao R (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by β-amyloid peptides 25–35 in PC12 cells. Int J Dev Neurosci 28(4):289–295

    Article  PubMed  CAS  Google Scholar 

  80. Linford NJ, Dorsa DM (2002) 17β-estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 67(13):1029–1040

    Article  CAS  PubMed  Google Scholar 

  81. Yu HL, Li L, Zhang XH, Xiang L, Zhang J, Feng JF, Xiao R (2009) Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by β-amyloid 31-35. Br J Nutr 102(05):655–662

    Article  CAS  PubMed  Google Scholar 

  82. Ding B, Yuan L, Yu H, Li L, Ma W, Bi Y, Feng J, Xiao R (2011) Genistein and folic acid prevent oxidative injury induced by β-amyloid peptide. Basic Clin Pharmacol Toxicol 108(5):333–340

    Article  CAS  PubMed  Google Scholar 

  83. Munoz L, Ammit AJ (2010) Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 58(3):561–568

    Article  CAS  PubMed  Google Scholar 

  84. Valles SL, Dolz-Gaiton P, Gambini J, Borras C, LLoret A, Pallardo FV, Viña J (2010) Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res 1312:138–144

    Article  CAS  PubMed  Google Scholar 

  85. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophysic Acta (BBA)-Molecular Basis of Disease 1802(1):2–10

    Article  CAS  Google Scholar 

  86. Xi YD, Yu HL, Ma WW, Ding BJ, Ding J, Yuan LH, Feng JF, Xiao R (2011) Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25–35 in PC12 cells. J Bioenerg Biomembr 2011 43(4):399–407

    Article  CAS  Google Scholar 

  87. Ma WW, Hou CC, Zhou X, Yu HL, Ding J, Zhao X, Xiao R (2013) Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res 38(7):1315–1323

    Article  CAS  PubMed  Google Scholar 

  88. White FA, Bhangoo SK, Miller RJ (2005) Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 4(10):834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heneka MT, Reyes-Irisarri E, Hull M, Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr Neuropharmacol 9(4):643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Facci L, Barbierato M, Marinelli C, Argentini C, Skaper SD, Giusti P (2014) Toll-like receptors 2,-3 and-4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1 [bgr] release. Sci Rep 4:6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu HL, Li XY, Zhou X, Yuan LH, Ma WW, Xi YD, Zhao X, Wu J et al (2013) Beta amyloid peptide (25-35) leading to inflammation through toll-like receptors and the anti-inflammatory effect of genistein in BV-2 cells. J Mol Neurosci 51(3):771–778

    Article  CAS  PubMed  Google Scholar 

  92. Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, Xiao R (2014) Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 30(1):90–95

    Article  PubMed  CAS  Google Scholar 

  93. Ma W, Ding B, Yu H, Yuan L, Xi Y, Xiao R (2015) Genistein alleviates β-amyloid-induced inflammatory damage through regulating toll-like receptor 4/nuclear factor κB. J Med Food 18(3):273–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF et al (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346(6216):1480–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iadecola C, Gorelick PB (2003) Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke 34(2):335–337

    Article  PubMed  Google Scholar 

  96. Xi YD, Yu HL, Ding J, Ma WW, Yuan LH, Feng JF, Xiao YX, Xiao R (2012) Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β-amyloid peptide-induced oxidative damage. Curr Neurovasc Res 9(1):32–41

    Article  CAS  PubMed  Google Scholar 

  97. Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 9(1):1

    Article  Google Scholar 

  98. Pan Y, Anthony M, Watson S, Clarkson TB (2000) Soy phytoestrogens improve radial arm maze performance in ovariectomized retired breeder rats and do not attenuate benefits of 17 [beta]-estradiol treatment. Menopause 7(4):230–235

    Article  CAS  PubMed  Google Scholar 

  99. Sarkaki A, Amani R, Badavi M, Moghaddam AZ, Aligholi H, Safahani, Haghighizadeh MH (2008) Pre-treatment effect of different doses of soy isoflavones on spatial learning and memory in an ovariectomized animal model of Alzheimer’s disease. Pak J Biol Sci 11(8):1114–1119

    Article  CAS  PubMed  Google Scholar 

  100. Bagheri M, Roghani M, Joghataei MT, Mohseni S (2012) Genistein inhibits aggregation of exogenous amyloid-beta 1–40 and alleviates astrogliosis in the hippocampus of rats. Brain Res 1429:145–154

    Article  CAS  PubMed  Google Scholar 

  101. Bagheri M, Rezakhani A, Nyström S, Turkina MV, Roghani M, Hammarström P, Mohseni S (2013) Amyloid beta 1-40-induced astrogliosis and the effect of genistein treatment in rat: a three-dimensional confocal morphometric and proteomic study. PLoS One 8(10):e76526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y (2013) Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer’s transgenic mice. Mol Neurobiol 47(3):857–867

    Article  CAS  PubMed  Google Scholar 

  103. Bonet-Costa V, Herranz-Pérez V, Blanco-Gandía M, Mas-Bargues C, Inglés M, Garcia-Tarraga P, Rodriguez-Arias M, Miñarro J et al Clearing amyloid-β through PPARγ/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease. J Alzheimers Dis 51(3):701–711

  104. Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I, Link CD, Zhao B et al (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kohara Y, Kawaguchi S, Kuwahara R, Uchida Y, Oku Y, Yamashita K (2015) Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation. Physiol Behav 140:15–22

    Article  CAS  PubMed  Google Scholar 

  106. Barrett-Connor E, Stuenkel CA (2001) Hormone replacement therapy (HRT)—risks and benefits. Int J Epidemiol 30(3):423–426

    Article  CAS  PubMed  Google Scholar 

  107. Pan M, Han H, Zhong C, Geng Q (2012) Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. J Nutr Health Aging 16(4):389–394

    Article  CAS  PubMed  Google Scholar 

  108. Lee JH, Jiang Y, Han DH, Shin SK, Choi WH, Lee MJ (2014) Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol Neurobiol 49(1):39–49

    Article  CAS  PubMed  Google Scholar 

  109. McClain RM, Wolz E, Davidovich A, Pfannkuch F, Edwards JA, Bausch J (2006) Acute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol 44(1):56–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Indian authors gladly acknowledge the computational and bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by Department of Biotechnology, Government of India; Grant No. BT/BI/25/015/2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kasi Pandima Devi or Seyed Mohammad Nabavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K.P., Shanmuganathan, B., Manayi, A. et al. Molecular and Therapeutic Targets of Genistein in Alzheimer’s Disease. Mol Neurobiol 54, 7028–7041 (2017). https://doi.org/10.1007/s12035-016-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0215-6

Keywords

Navigation