Skip to main content

Advertisement

Log in

Lentivirus-Mediated RNA Interference Targeting RhoA Slacks the Migration, Proliferation, and Myelin Formation of Schwann Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

RhoA, a member of Rho GTPases family, is known to play an important role in remodeling actin cytoskeleton. During the development of the peripheral nervous system (PNS), Schwann cells undergo proliferation, migration, and radial sorting and finally wrap the related axons compactly to form myelin sheath. All these processes involve actin cytoskeletal remodeling. However, the role of RhoA on Schwann cell during development is still unclear. To address this question, we first used a lentiviral vector-mediated short hairpin (sh) RNA targeting RhoA to knock down the expression of RhoA in the cultured Schwann cells in vitro. Effects of RhoA on Schwann cell proliferation and migration were examined by BrdU assay and transwell assay, respectively. Results of the present study indicated that downregulated RhoA expression in cultured Schwann cells significantly slacked the cells’ capabilities of migration and proliferation. Then, we investigated the role of RhoA in the developing rat sciatic nerves. Immunohistology and Western blotting showed that RhoA was mainly expressed in Schwann cells in the sciatic nerves and was peaked at 2 weeks postnatal then kept in low level up to 8 weeks. In the subjected rats whose sciatic nerves were microinjected with lentiviral vectors at postnatal 3 days, we found that the lentiviruses mainly transfected Schwann cells, and the RhoA expression in the transfected Schwann cells was significantly knocked down. Four weeks after lentivirus microinjection, immunohistology and transmission electron microscopy illustrated that RhoA knockdown resulted in hypomyelination and significant decrease of the thickness of myelin in the transfected area. Overall data of current study suggested that RhoA plays a critical role in Schwann cell biology and is essential for myelination in developing peripheral nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snaidero N, Simons M (2014) Myelination at a glance. J Cell Sci 127(Pt 14):2999–3004. doi:10.1242/jcs.151043

    Article  CAS  PubMed  Google Scholar 

  2. Kidd GJ, Ohno N, Trapp BD (2013) Biology of Schwann cells. Handb Clin Neurol 115:55–79. doi:10.1016/b978-0-444-52902-2.00005-9

    Article  PubMed  Google Scholar 

  3. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690. doi:10.1038/nrn1743

    Article  CAS  PubMed  Google Scholar 

  4. Salzer JL (2015) Schwann Cell Myelination. Cold Spring Harb Perspect Biol 7 (8). doi:10.1101/cshperspect.a020529

  5. Feltri ML, Poitelon Y, Previtali SC (2015) How Schwann cells sort axons: new concepts. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. doi:10.1177/1073858415572361

    Google Scholar 

  6. Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24(1):203–216. doi:10.1093/molbev/msl145

    Article  CAS  PubMed  Google Scholar 

  7. Devreotes P, Horwitz AR (2015) Signaling Networks that Regulate Cell Migration. Cold Spring Harb Perspect Biol 7 (8). doi:10.1101/cshperspect.a005959

  8. Mokady D, Meiri D (2015) RhoGTPases—a novel link between cytoskeleton organization and cisplatin resistance. Drug Resist Updat Rev Commentaries in Antimicrob Anticancer Chemother 19:22–32. doi:10.1016/j.drup.2015.01.001

    Google Scholar 

  9. Zuo Y, Oh W, Frost JA (2014) Controlling the switches: Rho GTPase regulation during animal cell mitosis. Cell Signal 26(12):2998–3006. doi:10.1016/j.cellsig.2014.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marjoram RJ, Lessey EC, Burridge K (2014) Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 14(2):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan JR (2007) Myelination: all about Rac 'n' roll. J Cell Biol 177(6):953–955. doi:10.1083/jcb.200705105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J (2013) Lysophosphatidic acid (LPA) and its receptor, LPA1, influence embryonic Schwann cell migration, myelination, and cell-to-axon segregation. Glia 61(12):2009–2022. doi:10.1002/glia.22572

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nodari A, Zambroni D, Quattrini A, Court FA, D’Urso A, Recchia A, Tybulewicz VL, Wrabetz L et al (2007) Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J Cell Biol 177(6):1063–1075. doi:10.1083/jcb.200610014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A, Herzog D, Nave KA et al (2007) Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol 177(6):1051–1061. doi:10.1083/jcb.200610108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo L, Moon C, Niehaus K, Zheng Y, Ratner N (2012) Rac1 controls Schwann cell myelination through cAMP and NF2/merlin. J Neurosc Off J Soc Neurosc 32(48):17251–17261. doi:10.1523/jneurosci.2461-12.2012

    Article  CAS  Google Scholar 

  16. Guo L, Moon C, Zheng Y, Ratner N (2013) Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. Glia 61(11):1906–1921. doi:10.1002/glia.22567

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahmed Z, Dent RG, Suggate EL, Barrett LB, Seabright RJ, Berry M, Logan A (2005) Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A. Mol Cell Neurosci 28(3):509–523. doi:10.1016/j.mcn.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  18. Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165(1):105–118

    Article  CAS  PubMed  Google Scholar 

  19. Barber SC, Mellor H, Gampel A, Scolding NJ (2004) S1P and LPA trigger Schwann cell actin changes and migration. Eur J Neurosci 19(12):3142–3150. doi:10.1111/j.0953-816X.2004.03424.x

    Article  PubMed  Google Scholar 

  20. Fragoso G, Robertson J, Athlan E, Tam E, Almazan G, Mushynski WE (2003) Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 183(1):34–46

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Wang L, Zhang Y, Wu J, Arpag S, Hu B, Imhof BA, Tian X et al (2014) Abnormal junctions and permeability of myelin in PMP22-deficient nerves. Ann Neurol 75(2):255–265. doi:10.1002/ana.24086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhan X, Gao M, Jiang Y, Zhang W, Wong WM, Yuan Q, Su H, Kang X et al (2013) Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomed NanotechnoloBiol Med 9(3):305–315. doi:10.1016/j.nano.2012.08.009

    Article  CAS  Google Scholar 

  23. Wang X, Pan M, Wen J, Tang Y, Hamilton AD, Li Y, Qian C, Liu Z et al (2014) A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly(lactic-co-glycolic acid) conduit. Neural Regen Res 9(24):2132–2141. doi:10.4103/1673-5374.147944

    Article  PubMed Central  Google Scholar 

  24. Hossain S, Fragoso G, Mushynski WE, Almazan G (2010) Regulation of peripheral myelination by Src-like kinases. Exp Neurol 226(1):47–57. doi:10.1016/j.expneurol.2010.08.002

    Article  CAS  Google Scholar 

  25. Melendez-Vasquez CV, Einheber S, Salzer JL (2004) Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J Neurosci Off J Soc Neurosci 24(16):3953–3963. doi:10.1523/jneurosci.4920-03.2004

    Article  CAS  Google Scholar 

  26. Webster HD, Martin R, O’Connell MF (1973) The relationships between interphase Schwann cells and axons before myelination: a quantitative electron microscopic study. Dev Biol 32(2):401–416

    Article  CAS  Google Scholar 

  27. Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63(8):1376–1393. doi:10.1002/glia.22852

    Article  PubMed Central  Google Scholar 

  28. Oyedele OO, Kramer B (2013) Nuanced but significant: how ethanol perturbs avian cranial neural crest cell actin cytoskeleton, migration and proliferation. Alcohol (Fayetteville, NY) 47(5):417–426. doi:10.1016/j.alcohol.2013.04.001

    Article  CAS  Google Scholar 

  29. Madonna R, Geng YJ, Shelat H, Ferdinandy P, De Caterina R (2014) High glucose-induced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1. Biochim Biophys Acta 1842(11):2266–2275. doi:10.1016/j.bbadis.2014.07.030

    Article  CAS  Google Scholar 

  30. Persson A, Lindberg OR, Kuhn HG (2013) Radixin inhibition decreases adult neural progenitor cell migration and proliferation in vitro and in vivo. Front Cell Neurosci 7:161. doi:10.3389/fncel.2013.00161

    Article  PubMed Central  Google Scholar 

  31. Stone JD, Narine A, Shaver PR, Fox JC, Vuncannon JR, Tulis DA (2013) AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. Am J Physiol Heart Circ Physiol 304(3):H369–381. doi:10.1152/ajpheart.00446.2012

    Article  CAS  Google Scholar 

  32. Wang L, Wang T, Song M, Pan J (2014) Rho plays a key role in TGF-beta1-induced proliferation and cytoskeleton rearrangement of human periodontal ligament cells. Arch Oral Biol 59(2):149–157. doi:10.1016/j.archoralbio.2013.11.004

    Article  CAS  Google Scholar 

  33. Stanley A, Thompson K, Hynes A, Brakebusch C, Quondamatteo F (2014) NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid Redox Signal 20(13):2026–2042. doi:10.1089/ars.2013.5713

    Article  CAS  Google Scholar 

  34. Kampa M, Pelekanou V, Gallo D, Notas G, Troullinaki M, Pediaditakis I, Charalampopoulos I, Jacquot Y et al (2011) ERalpha17p, an ERalpha P295–T311 fragment, modifies the migration of breast cancer cells, through actin cytoskeleton rearrangements. J Cell Biochem 112(12):3786–3796. doi:10.1002/jcb.23309

    Article  CAS  Google Scholar 

  35. Schram K, Ganguly R, No EK, Fang X, Thong FS, Sweeney G (2011) Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology 152(5):2037–2047. doi:10.1210/en.2010-1166

    Article  CAS  Google Scholar 

  36. Hu X, Yu J, Zhou X, Li Z, Xia Y, Luo Z, Wu Y (2014) A small GTPaselike protein fragment of Mycoplasma promotes tumor cell migration and proliferation in vitro via interaction with Rac1 and Stat3. Mol Med Rep 9(1):173–179. doi:10.3892/mmr.2013.1766

    CAS  Google Scholar 

  37. Frohnert PW, Stonecypher MS, Carroll SL (2003) Lysophosphatidic acid promotes the proliferation of adult Schwann cells isolated from axotomized sciatic nerve. J Neuropathol Exp Neurol 62(5):520–529

    Article  CAS  Google Scholar 

  38. Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101(23):8774–8779. doi:10.1073/pnas.0402795101

    Article  CAS  PubMed Central  Google Scholar 

  39. Perrin-Tricaud C, Rutishauser U, Tricaud N (2007) P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci 35(1):120–129. doi:10.1016/j.mcn.2007.02.010

    Article  CAS  Google Scholar 

  40. Gonzalez S, Fernando RN, Perrin-Tricaud C, Tricaud N (2014) In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors. Nat Protoc 9(5):1160–1169. doi:10.1038/nprot.2014.073

    Article  Google Scholar 

  41. Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB, Suter U, Tricaud N (2010) Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci Off J Soc Neurosci 30(11):4120–4131. doi:10.1523/jneurosci.5185-09.2010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Basic Research Program of China (2014CB542202 and 2014CB542205), National Natural Science Foundation of China (81371354 & 81571182), Science and Technology Foundation of Guangdong Province (2015A020212024), and Natural Science Foundation of Guangdong Province (S2013010014697) to J Guo and Hong Kong SCI Fund to W Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Qian, C., Pan, M. et al. Lentivirus-Mediated RNA Interference Targeting RhoA Slacks the Migration, Proliferation, and Myelin Formation of Schwann Cells. Mol Neurobiol 54, 1229–1239 (2017). https://doi.org/10.1007/s12035-016-9733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9733-5

Keywords

Navigation