Skip to main content

Advertisement

Log in

IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is some evidence that lowered tryptophan and an activated tryptophan catabolite (TRYCAT) pathway play a role in depression, somatoform disorder, and postpartum blues. The aim of this study is to delineate the associations between the TRYCAT pathway and premenstrual syndrome (PMS) and perinatal depressive and physio-somatic symptoms. We examine the associations between end of term serum IgM and IgA responses to tryptophan and 9 TRYCATs in relation to zinc, C-reactive protein (CRP), and haptoglobin and prenatal physio-somatic (previously known as psychosomatic) symptoms (fatigue, back pain, muscle pain, dyspepsia, obstipation) and prenatal and postnatal depression and anxiety symptoms as measured using the Edinburgh Postnatal Depression Scale (EPDS), Hamilton Depression Rating Scale (HAMD), and Spielberger’s State Anxiety Inventory (STAI). We included pregnant females with (n = 24) and without depression (n = 25) and 24 non-pregnant females. There were no significant associations between the IgA/IgM responses to tryptophan and TRYCATs and prenatal and postnatal depression/anxiety symptoms, except for lowered IgA responses to anthranilic acid in prenatal depression. A large part of the variance in IgA responses to most TRYCATs was explained by PMS and haptoglobin (positively) and CRP (inversely) levels. The IgA responses to TRYCATs were significantly increased in PMS, in particular picolinic, anthranilic, xanthurenic and kynurenic acid, and 3OH-kynurenine. Variance (62.5%) in physio-somatic symptoms at the end of term was explained by PMS, previous depressions, zinc (inversely), CRP and haptoglobin (both positively), and the IgM responses to quinolinic acid (positively), anthranilic acid, and tryptophan (both negatively). The results suggest that mucosa-derived TRYCAT pathway activation is significantly associated with PMS, but not with perinatal depression/anxiety symptoms. Physio-somatic symptoms in pregnancy have an immune-inflammatory pathophysiology. Induction of the TRYCAT pathway appears to be more related to physio-somatic than to depression symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, Allen NB, Stuart AL, Hayley AC, Byrne ML et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lasoń W, Budziszewska B, Basta-Kaim A, Kubera M, Maes M (2013) New trends in the neurobiology and pharmacology of affective disorders. Pharmacol Rep 65(6):1441–1450

    Article  PubMed  Google Scholar 

  3. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785

    Article  CAS  PubMed  Google Scholar 

  4. Maes M, Anderson G, Kubera M, Berk M (2014) Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 18(5):495–512

    Article  CAS  PubMed  Google Scholar 

  5. Maes M, Kubera M, Leunis JC (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett 29:117–124

    PubMed  Google Scholar 

  6. Maes M, Kubera M, Leunis JC, Berk M (2012) Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 141:55–62

    Article  CAS  PubMed  Google Scholar 

  7. Maes M, Scharpé S, Meltzer HY, Okayli G, Bosmans E, D’Hondt P, Vanden Bossche BV, Cosyns P (1994) Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 54(2):143–160

    Article  CAS  PubMed  Google Scholar 

  8. Maes M, Verkerk R, Vandoolaeghe E, Van Hunsel F, Neels H, Wauters A, Demedts P, Scharpé S (1997) Serotonin-immune interactions in major depression: lower serum tryptophan as a marker of an immune-inflammatory response. Eur Arch Psychiatry Clin Neurosci 247(3):154–161

    Article  CAS  PubMed  Google Scholar 

  9. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, Hayley AC, Pasco JA, Anderson G, Jacka FN et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62

    Article  CAS  PubMed  Google Scholar 

  10. Noto C, Rizzo LB, Mansur RB, McIntyre RS, Maes M, Brietzke E (2014) Targeting the inflammatory pathway as a therapeutic tool for major depression. Neuroimmunomodulation 21(2-3):131–139

    Article  CAS  PubMed  Google Scholar 

  11. Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M (2013) Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep 65(6):1647–1654

    Article  CAS  PubMed  Google Scholar 

  12. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  CAS  PubMed  Google Scholar 

  13. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    Article  CAS  PubMed  Google Scholar 

  14. Maes M, Scharpe S, Bosmans E, Vandewoude M, Suy E, Uyttenbroeck W, Cooreman W, Vandervorst C, Raus J (1992) Disturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illness. Prog Neuropsychopharmacol Biol Psychiatry 16(4):501–515

    Article  CAS  PubMed  Google Scholar 

  15. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson G, Berk M, Dean O, Moylan S, Maes M (2014) Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 28(1):1–10

    Article  CAS  PubMed  Google Scholar 

  17. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    Article  CAS  PubMed  Google Scholar 

  19. Jiménez-Fernández S, Gurpegui M, Díaz-Atienza F, Pérez-Costillas L, Gerstenberg M, Correll CU (2015) Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry 76(12):1658–1667

    Article  PubMed  Google Scholar 

  20. Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, Wiktorowicz K (1996) Indicators of immune activation in major depression. Psychiatry Res 64(3):161–167

    Article  CAS  PubMed  Google Scholar 

  21. Maes M, Rief W (2012) Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res 196(2-3):243–249

    Article  CAS  PubMed  Google Scholar 

  22. Iseme RA, McEvoy M, Kelly B, Agnew L, Attia J, Walker FR (2014) Autoantibodies and depression: evidence for a causal link? Neurosci Biobehav Rev 40:62–79

    Article  CAS  PubMed  Google Scholar 

  23. Anderson G, Maes M (2015) The gut-brain axis: the role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions. Adv Integr Med 2(1):31–37

    Article  Google Scholar 

  24. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5):344–354

    Article  CAS  PubMed  Google Scholar 

  25. Subero MM, Anderson G, Kanchanatawan B, Berk M, Maes M (2015) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative and nitrosative stress, tryptophan catabolite and gut-brain pathways. CNS Spectrums 26:1–15

    Google Scholar 

  26. Maes M, Stevens WJ, Declerck LS, Bridts CH, Peeters D, Schotte C, Cosyns P (1993) Significantly increased expression of T-cell activation markers (interleukin-2 and HLA-DR) in depression: further evidence for an inflammatory process during that illness. Prog Neuropsychopharmacol Biol Psychiatry 17(2):241–255

    Article  CAS  PubMed  Google Scholar 

  27. Hood SD, Bell CJ, Nutt DJ (2005) Acute tryptophan depletion. Part I: rationale and methodology. Aust N Z J Psychiatry 39(7):558–564

    Article  PubMed  Google Scholar 

  28. Toker L, Amar S, Bersudsky Y, Benjamin J, Klein E (2010) The biology of tryptophan depletion and mood disorders. Isr J Psychiatry Relat Sci 47(1):46–55

    PubMed  Google Scholar 

  29. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721

    Article  CAS  PubMed  Google Scholar 

  30. Anderson G, Maes M (2014) Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des 20(23):3812–3847

    Article  CAS  PubMed  Google Scholar 

  31. Anderson G, Maes M, Berk M (2012) Inflammation-related disorders in the tryptophan catabolite pathway in depression and somatization. Adv Protein Chem Struct Biol 88:27–48

    Article  CAS  PubMed  Google Scholar 

  32. Morris G, Carvalho A, Anderson G, Galecki P, Maes M (2015) The many neuroprogressive actions of tryptophan catabolites (TRYCATs) that may be associated with the pathophysiology of neuro-immune disorders. Curr Pharm Des (Epub ahead of print)

  33. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90

    Article  CAS  PubMed  Google Scholar 

  34. Maes M, De Ruyter M, Hobin P, Suy E (1987) Relationship between the dexamethasone suppression test and the L-tryptophan/competing amino acids ratio in depression. Psychiatry Res 21(4):323–335

    Article  CAS  PubMed  Google Scholar 

  35. Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1-2):143–151

    Article  CAS  PubMed  Google Scholar 

  36. Gabbay V, Liebes L, Katz Y, Liu S, Mendoza S, Babb JS, Klein RG, Gonen O (2010) The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 34(1):37–44

    Article  CAS  PubMed  Google Scholar 

  37. Anderson G, Berk M, Maes M (2014) Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 129(2):83–97

    Article  CAS  PubMed  Google Scholar 

  38. Anderson G, Maes M, Berk M (2012) Biological underpinnings of the commonalities in depression, somatization, and chronic fatigue syndrome. Med Hypotheses 78(6):752–756

    Article  PubMed  Google Scholar 

  39. Maes M, Galecki P, Verkerk R, Rief W (2011) Somatization, but not depression, is characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase activity. Neuro Endocrinol Lett 32(3):264–273

    CAS  PubMed  Google Scholar 

  40. Maes M, Ringel K, Kubera M, Anderson G, Morris G, Galecki P, Geffard M (2013) In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord 150(2):223–230

    Article  CAS  PubMed  Google Scholar 

  41. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpé S (2002) Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci 71(16):1387–1348

    Article  Google Scholar 

  42. Veen C, Myint AM, Burgerhout KM, Schwarz MJ, Schütze G, Kushner SA, Hoogendijk WJ, Drexhage HA, Bergink V (2016) Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression. J Affect Disord 189:298–305

    Article  CAS  PubMed  Google Scholar 

  43. Bell CJ, Hood SD, Nutt DJ (2005) Acute tryptophan depletion. Part II: clinical effects and implications. Aust N Z J Psychiatry 39(7):565–574

    Article  PubMed  Google Scholar 

  44. Korzekwa MI, Steiner M (1997) Premenstrual syndromes. Clin Obstet Gynecol 40(3):564–576

    Article  CAS  PubMed  Google Scholar 

  45. Kouri EM, Halbreich U (1997) State and trait serotonergic abnormalities in women with dysphoric premenstrual syndromes. Psychopharmacol Bull 33(4):767–770

    CAS  PubMed  Google Scholar 

  46. Taylor DL, Matthew RJ, Ho BT, Weinman ML (1984) Serotonin levels and platelet uptake during premenstrual tension. Neuropsychobiology 12:16–18

    Article  CAS  PubMed  Google Scholar 

  47. Menkes DB, Coates DC, Fawcett JP (1994) Acute tryptophan depletion aggravates premenstrual syndrome. J Affect Disord 32:37–44

    Article  CAS  PubMed  Google Scholar 

  48. Rapkin AJ, Akopians AL (2012) Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder. Menopause Int 18(2):52–59

    PubMed  Google Scholar 

  49. Lolas-Talhami J, Lafaja-Mazuecos J, Ferrández-Sempere D (2015) Is premenstrual syndrome a uterine inflammatory disease? Retrospective evaluation of an etiologic approach. Open J Obstet Gynecol 5:305–312

    Article  CAS  Google Scholar 

  50. Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, Faraj JL, Whitcomb BW (2014) Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod 29(9):1987–1994

    Article  CAS  PubMed  Google Scholar 

  51. Graziottin A, Zanello PP (2015) Menstruation, inflammation and comorbidities: implications for woman health. Minerva Ginecol 67(1):21–34

    CAS  PubMed  Google Scholar 

  52. Hantsoo L, Epperson CN (2015) Premenstrual dysphoric disorder: epidemiology and treatment. Curr Psychiatry Rep 17(11):87

    Article  PubMed  PubMed Central  Google Scholar 

  53. Puder JJ, Blum CA, Mueller B, De Geyter C, Dye L, Keller U (2006) Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Investig 36:58–64

    Article  CAS  Google Scholar 

  54. O’Brien SM, Fitzgerald P, Scully P, Landers A, Scott LV, Dinan TG (2007) Impact of gender and menstrual cycle phase on plasma cytokine concentrations. Neuroimmunomodulation 14:84–90

    Article  PubMed  Google Scholar 

  55. Northoff H, Symons S, Zieker D, Schaible EV, Schäfer K, Thoma S (2008) Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev 14:86–103

    PubMed  Google Scholar 

  56. Gaskins AJ, Wilchesky M, Mumford SL, Whitcomb BW, Browne RW, Wactawski-Wende J, Perkins NJ, Schisterman EF (2012) Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: the BioCycle Study. Am J Epidemiol 175(5):423–431

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wander K, Brindle E, O’Connor KA (2008) C-reactive protein across the menstrual cycle. Am J Phys Anthropol 136(2):138–146

    Article  PubMed  Google Scholar 

  58. Jane ZY, Chang CC, Lin HK, Liu YC, Chen WL (2011) The association between the exacerbation of irritable bowel syndrome and menstrual symptoms in young Taiwanese women. Gastroenterol Nurs 34:277–286

    Article  PubMed  Google Scholar 

  59. Kane SV, Sable K, Hanauer SB (1998) The menstrual cycle and its effect on inflammatory bowel disease and irritable bowel syndrome: a prevalence study. Am J Gastroenterol 93:1867–1872

    Article  CAS  PubMed  Google Scholar 

  60. Shourie V, Dwarakanath CD, Prashanth GV, Alampalli RV, Padmanabhan S, Bali S (2012) The effect of menstrual cycle on periodontal health—a clinical and microbiological study. Oral Health Prev Dent 10:185–192

    PubMed  Google Scholar 

  61. Onodera T, Jang MH, Guo Z, Yamasaki M, Hirata T, Bai Z, Tsuji NM, Nagakubo D, Yoshie O, Sakaguchi S et al (2009) Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol 183(9):5608–5614

    Article  CAS  PubMed  Google Scholar 

  62. Cherayil BJ (2009) Indoleamine 2,3-dioxygenase in intestinal immunity and inflammation. Inflamm Bowel Dis 15(9):1391–1396

    Article  PubMed  Google Scholar 

  63. Anderson G, Maes M (2013) Postpartum depression: psychoneuroimmunological underpinnings and treatment. Neuropsychiatr Dis Treat 9:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pitanupong J, Liabsuetrakul T, Vittayanont A (2007) Validation of the Thai Edinburgh Postnatal Depression Scale for screening postpartum depression. Psychiatry Res 149(1-3):253–259

    Article  PubMed  Google Scholar 

  65. Vacharaporn K, Pitanupong J, Samangsri N (2003) Development of The Edinburgh Postnatal Depression Scale Thai Version. J Ment Health Thai 11(3):164–169

    Google Scholar 

  66. Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Mahieu B, Nowak G, Maes M (2016) Lower serum zinc and higher CRP strongly predict prenatal depression and physio-somatic symptoms, which all together predict postnatal depressive symptoms. Mol Neurobiol, Epub ahead of print

  67. Hamilton M (2000) Hamilton Rating Scale for Depression (Ham-D). In: Handbook of psychiatric measures. APA, Washington DC, pp 526–528

    Google Scholar 

  68. Spielberger CD, Vagg PR (1984) Psychometric properties of the STAI: a reply to Ramanaiah, Franzen, and Schill. J Pers Assess 48(1):95–97

    Article  CAS  PubMed  Google Scholar 

  69. Junqueira LC, Carneiro J (2003) Basic Histology: Lange Medical Books McGraw-Hill, New York

  70. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defenses. Nat Rev Immunol 3(1):63–72

    Article  CAS  PubMed  Google Scholar 

  71. Li DD, Liu XY, Guo CH, Yue L, Yang ZQ, Cao H, Guo B, Yue ZP (2015) Differential expression and regulation of Ido2 in the mouse uterus during peri-implantation period. In Vitro Cell Dev Biol Anim 51(3):264–272

    Article  PubMed  Google Scholar 

  72. King NJ, Thomas SR (2007) Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39(12):2167–2172

    Article  CAS  PubMed  Google Scholar 

  73. Mei J, Li MQ, Ding D, Li DJ, Jin LP, Hu WG, Zhu XY (2013) Indoleamine 2,3-dioxygenase-1 (IDO1) enhances survival and invasiveness of endometrial stromal cells via the activation of JNK signaling pathway. Int J Clin Exp Pathol 6(3):431–444

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mei J, Xie XX, Li MQ, Wei CY, Jin LP, Li DJ, Zhu XY (2014) Indoleamine 2,3-dioxygenase-1 (IDO1) in human endometrial stromal cells induces macrophage tolerance through interleukin-33 in the progression of endometriosis. Int J Clin Exp Pathol 7(6):2743–2757

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dürr S, Kindler V (2013) Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J Leukoc Biol 93(5):681–687

    Article  PubMed  Google Scholar 

  76. Soliman H, Mediavilla-Varela M, Antonia S (2010) Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J 16(4):354–359

    Article  CAS  PubMed  Google Scholar 

  77. MacKenzie G, Maguire J (2014) The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology (Berl) 231(17):3333–3342

    Article  CAS  Google Scholar 

  78. Studd J (2014) Hormone therapy for reproductive depression in women. Post Reprod Health 20(4):132–137

    Article  PubMed  Google Scholar 

  79. Studd J, Nappi RE (2012) Reproductive depression. Gynecol Endocrinol 28(Suppl 1):42–45

    Article  CAS  PubMed  Google Scholar 

  80. Turkcapar AF, Kadıoğlu N, Aslan E, Tunc S, Zayıfoğlu M, Mollamahmutoğlu L (2015) Sociodemographic and clinical features of postpartum depression among Turkish women: a prospective study. BMC Pregnancy Childbirth 3(15):108

    Article  Google Scholar 

  81. Watanabe K, Shirakawa T (2015) Characteristics of perceived stress and salivary levels of secretory immunoglobulin A and cortisol in Japanese women with premenstrual syndrome. Nurs Midwifery Stud 4(2):e24795

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J Neurochem 82(2):258–268

    Article  CAS  PubMed  Google Scholar 

  83. Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T (2005) Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol 106:1071–1083

    Article  PubMed  Google Scholar 

  84. Stuart-Parrigon K, Stuart S (2014) Perinatal depression: an update and overview. Curr Psychiatry Rep 16(9):468

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rios-Avila L, Nijhout HF, Reed MC, Sitren HS, Gregory JF (2013) A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolite. J Nutr 143(9):1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoes MJ (1979) The clinical significance of an elevated excretion of xanthurenic acid in psychiatric patients. Acta Psychiatr Belg 79(6):638–646

    CAS  PubMed  Google Scholar 

  87. Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, Stone TW (2010) On the Biological Importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res 3:51–59

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Aqbal D, Abdallah A, Bolloso E, Angerio A: The role of c- reactive protein in inflammatory bowel disease. GUJHS 2007, 4(1). https://blogs.commons.georgetown.edu/journal-of-health-sciences/issue-2/previous-volumes/vol-4-no-1-march-2007/

  89. Harrison M (2015) Erythrocyte sedimentation rate and C-reactive protein. Aust Prescr 38(3):93–94

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zouki C, Beauchamp M, Baron C, Filep JG (1997) Prevention of In vitro neutrophil adhesion to endothelial cells through shedding of L-selectin by C-reactive protein and peptides derived from C-reactive protein. J Clin Invest 100(3):522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454

    Article  CAS  PubMed  Google Scholar 

  92. Vermeire S, Van Assche G, Rutgeerts P (2004) C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis 10(5):661–665

    Article  PubMed  Google Scholar 

  93. Badawy AA (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35(5):e00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shibata K, Fukuwatari T, Murakami M, Sasaki R (2003) Increase in conversion of tryptophan to niacin in pregnant rats. Adv Exp Med Biol 527:435–441

    Article  CAS  PubMed  Google Scholar 

  95. Ban Y, Chang Y, Dong B, Kong B, Qu X (2013) Indoleamine 2,3-dioxygenase levels at the normal and recurrent spontaneous abortion fetal-maternal interface. J Int Med Res 41(4):1135–1149

    Article  CAS  PubMed  Google Scholar 

  96. Maes M, Ombelet W, De Jongh R, Kennis G, Bosman E (2001) The inflammatory response following delivery is amplified in women who previously suffered from major depression, suggesting that major depression is accompanied by a sensitization of the inflammatory response system. J Affect Disord 63:85–92

    Article  CAS  PubMed  Google Scholar 

  97. Alberts B, Johnson A, Lewis J, Walter P, Raff M, Roberts K: Molecular biology of the cell In., 4th edn: Routledge; 2002.

  98. The American Heritage Dictionary (2004) The American Heritage Dictionary of the English Language: Immunoglobulin M, 4th edn: Houghton Mifflin Company, Boston

  99. Maes M (2009) “Functional” or “psychosomatic” symptoms, e.g. a flu-like malaise, aches and pain and fatigue, are major features of major and in particular of melancholic depression. Neuro Endocrinol Lett 30(5):564–573

    PubMed  Google Scholar 

  100. Groer MW, Morgan K (2007) Immune, health and endocrine characteristics of depressed postpartum mothers. Psychoneuroendocrinology 32(2):133–139

    Article  CAS  PubMed  Google Scholar 

  101. Wichers MC, Koek GH, Robaeys G, Praamstra AJ, Maes M (2005) Early increase in vegetative symptoms predicts IFN-alpha-induced cognitive-depressive changes. Psychol Med 35(3):433–441

    Article  CAS  PubMed  Google Scholar 

  102. O’Connor E, Rossom RC, Henninger M, Groom HC, Burda BU (2016) Primary care screening for and treatment of depression in pregnant and postpartum women: evidence report and systematic review for the US Preventive Services Task Force. JAMA 315(4):388–406

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research has been supported by the Ratchadaphiseksomphot Endowment Fund 2013 of Chulalongkorn University (CU-56-457-HR)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest with any commercial or other association in connection with the submitted article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roomruangwong, C., Kanchanatawan, B., Sirivichayakul, S. et al. IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome. Mol Neurobiol 54, 3038–3049 (2017). https://doi.org/10.1007/s12035-016-9877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9877-3

Keywords

Navigation