Skip to main content
Log in

Maternal Folic Acid Supplementation During Pregnancy Improves Neurobehavioral Development in Rat Offspring

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Maternal folate status during pregnancy may influence central nervous system (CNS) development in offspring. However, the recommended intakes of folic acid for women of childbearing age differ among countries and there is still no consensus about whether folic acid should be supplemented continuously throughout pregnancy. We hypothesized that folic acid supplementation may be more beneficial for offspring’s neurobehavioral development if prolonged throughout pregnancy instead of being limited to the periconceptional period. In this study, three groups of the female rats were fed folate-normal, folate-deficient, or folate-supplemented diets throughout pregnancy. In another group, the female rats were fed folate-supplemented diet from mating for 10 consecutive days and then fed folate-normal diet for remainder days of pregnancy. The results showed that maternal folate deficiency increased plasma homocysteine (Hcy) concentration in dams, delayed early sensory-motor reflex development, impaired spatial learning and memory ability, and caused ultrastructural damages in the hippocampus of offspring. Maternal folic acid supplementation would be more effective on improving early sensory-motor reflex development and spatial learning and memory ability in offspring if prolonged throughout pregnancy instead of being limited to the periconceptional period. In conclusion, prolonged maternal folic acid supplementation throughout pregnancy would be more effective in neurobehavioral development of offspring in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

MWM:

Morris water maze

NTDs:

Neural tube defects

PND:

Postnatal day

References

  1. Safi J, Joyeux L, Chalouhi GE (2012) Periconceptional folate deficiency and implications in neural tube defects. J Pregnancy 2012:295083. doi:10.1155/2012/295083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallingford JB, Niswander LA, Shaw GM, Finnell RH (2013) The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339:1222002. doi:10.1126/science.1222002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gueant JL, Namour F, Gueant-Rodriguez RM, Daval JL (2013) Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab 24:279–289. doi:10.1016/j.tem.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  4. Blaise SA, Nedelec E, Schroeder H, Alberto JM, Bossenmeyer-Pourie C, Gueant JL, Daval JL (2007) Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am J Pathol 170:667–679. doi:10.2353/ajpath.2007.060339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Craciunescu CN, Brown EC, Mar MH, Albright CD, Nadeau MR, Zeisel SH (2004) Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. J Nutr 134:162–166

    Article  CAS  PubMed  Google Scholar 

  6. Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R (2015) MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience 300:1–9. doi:10.1016/j.neuroscience.2015.04.067

    Article  CAS  PubMed  Google Scholar 

  7. Jadavji NM, Deng L, Leclerc D, Malysheva O, Bedell BJ, Caudill MA, Rozen R (2012) Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus. Mol Genet Metab 106:149–159. doi:10.1016/j.ymgme.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  8. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835. doi:10.1056/nejm199212243272602

    Article  CAS  PubMed  Google Scholar 

  9. McGarel C, Pentieva K, Strain JJ, McNulty H (2015) Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc 74:46–55. doi:10.1017/S0029665114001554

    Article  CAS  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2004) Spina bifida and anencephaly before and after folic acid mandate—United States, 1995-1996 and 1999-2000. MMWR Morb Mortal Wkly Rep 53:362–365

    Google Scholar 

  11. De Wals P, Tairou F, Van Allen MI, Soo-Hong U, Lowry RB, Sibbald B, Evans JA, Van den Hof MC et al (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357:135–142. doi:10.1056/NEJMoa067103

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Hao L, Zhang L, Tian Y, Cao Y, Xia H, Deng Y, Wang T et al (2009) Plasma folate status and dietary folate intake among Chinese women of childbearing age. Matern Child Nutr 5:104–116. doi:10.1111/j.1740-8709.2008.00172.x

    Article  PubMed  Google Scholar 

  13. Chitayat D, Matsui D, Amitai Y, Kennedy D, Vohra S, Rieder M, Koren G (2016) Folic acid supplementation for pregnant women and those planning pregnancy: 2015 update. J Clin Pharmacol 56:170–175. doi:10.1002/jcph.616

    Article  CAS  PubMed  Google Scholar 

  14. Gomes S, Lopes C, Pinto E (2016) Folate and folic acid in the periconceptional period: recommendations from official health organizations in thirty-six countries worldwide and WHO. Public Health Nutr 19:176–189. doi:10.1017/S1368980015000555

    Article  PubMed  Google Scholar 

  15. Fitting S, Booze RM, Mactutus CF (2007) Neonatal intrahippocampal gp120 injection: an examination early in development. Neurotoxicology 28:101–107. doi:10.1016/j.neuro.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  16. Vorhees CV, Williams MT (2014) Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Neurotoxicol Teratol 45:75–90. doi:10.1016/j.ntt.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, Yao L, Hu Q et al (2013) Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34:3870–3881. doi:10.1016/j.biomaterials.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Tiwari SK, Agarwal S, Chauhan LK, Mishra VN, Chaturvedi RK (2015) Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol Neurobiol 51:1395–1416. doi:10.1007/s12035-014-8817-3

    Article  CAS  PubMed  Google Scholar 

  19. Benton D, ILSI Europe a.i.s.b.l. (2008) Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr 47(Suppl 3):38–50. doi:10.1007/s00394-008-3004-9

    Article  CAS  PubMed  Google Scholar 

  20. Bhatia P, Singh N (2015) Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol 29:522–528. doi:10.1111/fcp.12145

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Pickell L, Liu Y, Wu Q, Cohn JS, Rozen R (2005) Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr 82:188–195

    Article  CAS  PubMed  Google Scholar 

  22. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005. doi:10.1016/j.febslet.2006.04.088

    Article  CAS  PubMed  Google Scholar 

  23. Dhobale M, Joshi S (2012) Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J Matern Fetal Neonatal Med 25:317–323. doi:10.3109/14767058.2011.579209

    Article  CAS  PubMed  Google Scholar 

  24. Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC, Tyagi N (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215. doi:10.1007/s12031-013-0122-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449. doi:10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  26. Fan LW, Chen RF, Mitchell HJ, Lin RC, Simpson KL, Rhodes PG, Cai Z (2008) Alpha-phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced brain injury and improves neurological reflexes and early sensorimotor behavioral performance in juvenile rats. J Neurosci Res 86:3536–3547. doi:10.1002/jnr.21812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franco-Pons N, Torrente M, Colomina MT, Vilella E (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169:205–213. doi:10.1016/j.toxlet.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  28. Yang HY, Liu Y, Xie JC, Liu NN, Tian X (2015) Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behav Brain Res 281:149–155. doi:10.1016/j.bbr.2014.12.037

    Article  PubMed  Google Scholar 

  29. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    Article  CAS  PubMed  Google Scholar 

  30. Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122:125–139. doi:10.1016/j.pharmthera.2009.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burdge GC, Lillycrop KA (2014) Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiol Behav 134:119–122. doi:10.1016/j.physbeh.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  32. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA (2007) Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 61:5R–10R. doi:10.1203/pdr.0b013e318045bedb

    Article  PubMed  Google Scholar 

  33. Irwin RE, Pentieva K, Cassidy T, Lees-Murdock DJ, McLaughlin M, Prasad G, McNulty H, Walsh CP (2016) The interplay between DNA methylation, folate and neurocognitive development. Epigenomics 8:863–879. doi:10.2217/epi-2016-0003

    Article  CAS  PubMed  Google Scholar 

  34. Subbanna S, Nagre NN, Shivakumar M, Basavarajappa BS (2016) A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice. Physiol Behav 167:16–27. doi:10.1016/j.physbeh.2016.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barua S, Kuizon S, Brown WT, Junaid MA (2016) DNA methylation profiling at single-base resolution reveals gestational folic acid supplementation influences the epigenome of mouse offspring cerebellum. Front Neurosci 10:168. doi:10.3389/fnins.2016.00168

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li W, Liu H, Yu M, Zhang X, Zhang M, Wilson JX, Huang G (2015) Folic acid administration inhibits amyloid beta-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem 26:883–891. doi:10.1016/j.jnutbio.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  37. Song X, Fan X, Li X, Kennedy D, Pang L, Quan M, Chen X, Gao J et al (2014) Serum levels of BDNF, folate and homocysteine: in relation to hippocampal volume and psychopathology in drug naive, first episode schizophrenia. Schizophr Res 159:51–55. doi:10.1016/j.schres.2014.07.033

    Article  PubMed  Google Scholar 

  38. Mesquita AR, Pego JM, Summavielle T, Maciel P, Almeida OF, Sousa N (2007) Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147:1022–1033. doi:10.1016/j.neuroscience.2007.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of China (Nos. 81472967 and 81602849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Huang.

Ethics declarations

Tianjin Medical University Animal Ethics Committee approved the experimental protocols of this study (TMUaEC2015001).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, W., Li, S. et al. Maternal Folic Acid Supplementation During Pregnancy Improves Neurobehavioral Development in Rat Offspring. Mol Neurobiol 55, 2676–2684 (2018). https://doi.org/10.1007/s12035-017-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0534-2

Keywords

Navigation