Skip to main content

Advertisement

Log in

Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson’s Disease Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The exact mechanism of gut dysfunction in Parkinson’s disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

Ach:

Acetylcholine

AngII:

Angiotensin II

AT1:

Angiotensin type 1 receptor

β-ACT:

β-Actin

BBB:

Blood-brain-barrier

CNS:

Central nervous system

D1:

Dopamine type 1

DAI:

Disease activity index

DMV:

Dorsal vagal motor nucleus

DOPAC:

3,4-Dihydroxyphenylacetic acid

DSS:

Sulfate sodium salt

ENS:

Enteric nervous system

GADPH:

Glyceraldehyde 3-phosphate dehydrogenase

GI:

Gastrointestinal

HPLC:

High-performance liquid chromatography

HVA:

Homovanillic acid

IL:

Interleukin

RAS:

Renin-angiotensin system

SN:

Substantia nigra

TH:

Tyrosine hydroxylase

WB:

Western blot

References

  1. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012

    Article  PubMed  CAS  Google Scholar 

  2. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L et al (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820. https://doi.org/10.1007/s00401-014-1343-6

    Article  PubMed  Google Scholar 

  3. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762. https://doi.org/10.1371/journal.pone.0008762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G et al (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2(1):898. https://doi.org/10.1038/srep00898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F, Heymann MF, Neunlist M et al (2015) Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 3(1):12. https://doi.org/10.1186/s40478-015-0196-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007

    Article  PubMed  CAS  Google Scholar 

  7. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962. https://doi.org/10.1038/ng.175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Villaran RF, Espinosa-Oliva AM, Sarmiento M, De Pablos RM, Arguelles S, Delgado-Cortes MJ, Sobrino V, Van Rooijen N et al (2010) Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem 114(6):1687–1700. https://doi.org/10.1111/j.1471-4159.2010.06879.x

    Article  PubMed  CAS  Google Scholar 

  9. Engelender S, Isacson O (2017) The threshold theory for Parkinson’s disease. Trends Neurosci 40(1):4–14. https://doi.org/10.1016/j.tins.2016.10.008

    Article  PubMed  CAS  Google Scholar 

  10. Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH, Derkinderen P, Beach TG (2018 Jan) Does Parkinson’s disease start in the gut? Acta Neuropathol 135(1):1–12. https://doi.org/10.1007/s00401-017-1777-8

    Article  PubMed  Google Scholar 

  11. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Controversies over the staging of alpha-synuclein pathology in Parkinson’s disease. Acta Neuropathol 116(1):125–128; author reply 129-131. https://doi.org/10.1007/s00401-008-0381-3

    Article  PubMed  Google Scholar 

  12. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of alpha-synuclein staging. Neuropathol Appl Neurobiol 34(3):284–295. https://doi.org/10.1111/j.1365-2990.2007.00923.x

    Article  PubMed  CAS  Google Scholar 

  13. Fornai M, Pellegrini C, Antonioli L, Segnani C, Ippolito C, Barocelli E, Ballabeni V, Vegezzi G et al (2016) Enteric dysfunctions in experimental Parkinson’s disease: alterations of excitatory cholinergic neurotransmission regulating colonic motility in rats. J Pharmacol Exp Ther 356(2):434–444. https://doi.org/10.1124/jpet.115.228510

    Article  PubMed  CAS  Google Scholar 

  14. Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G, Cerri S, Segnani C et al (2016) Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflammation 13(1):146. https://doi.org/10.1186/s12974-016-0608-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang ZY, Lian H, Cai QQ, Song HY, Zhang XL, Zhou L, Zhang YM, Zheng LF et al (2014) No direct projection is observed from the substantia nigra to the dorsal vagus complex in the rat. J Parkinsons Dis 4(3):375–383. https://doi.org/10.3233/JPD-130279

    Article  PubMed  CAS  Google Scholar 

  16. Anselmi L, Toti L, Bove C, Hampton J, Travagli RA (2017) A Nigro-Vagal pathway controls gastric motility and is affected in a rat model of parkinsonism. Gastroenterology. Sep 11. pii: S0016–5085(17)36138–3. doi: https://doi.org/10.1053/j.gastro.2017.08.069

  17. Aguilar MJ, Estan L, Martinez-Mir I, Martinez-Abad M, Rubio E, Morales-Olivas FJ (2005) Effects of dopamine in isolated rat colon strips. Can J Physiol Pharmacol 83(6):447–452. https://doi.org/10.1139/y05-031

    Article  PubMed  CAS  Google Scholar 

  18. Walker JK, Gainetdinov RR, Mangel AW, Caron MG, Shetzline MA (2000) Mice lacking the dopamine transporter display altered regulation of distal colonic motility. Am J Physiol Gastrointest Liver Physiol 279(2):G311–G318. https://doi.org/10.1152/ajpgi.2000.279.2.G311

    Article  PubMed  CAS  Google Scholar 

  19. de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW (2012) The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav 106(3):394–399. https://doi.org/10.1016/j.physbeh.2012.02.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, Deuther-Conrad W, Tellez LA et al (2017) Gastric bypass surgery recruits a gut PPAR-alpha-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab 25(2):335–344. https://doi.org/10.1016/j.cmet.2016.12.006

    Article  PubMed  CAS  Google Scholar 

  21. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, Lam TT, Schwartz GJ et al (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341(6147):800–802. https://doi.org/10.1126/science.1239275

    Article  PubMed  CAS  Google Scholar 

  22. Gildea JJ (2009) Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance. Curr Opin Nephrol Hypertens 18(1):28–32. https://doi.org/10.1097/MNH.0b013e32831a9e0b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Khan F, Spicarova Z, Zelenin S, Holtback U, Scott L, Aperia A (2008) Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol 295(4):F1110–F1116. https://doi.org/10.1152/ajprenal.90336.2008

    Article  PubMed  CAS  Google Scholar 

  24. Padia SH, Kemp BA, Howell NL, Keller SR, Gildea JJ, Carey RM (2012) Mechanisms of dopamine D(1) and angiotensin type 2 receptor interaction in natriuresis. Hypertension 59(2):437–445. https://doi.org/10.1161/HYPERTENSIONAHA.111.184788

    Article  PubMed  CAS  Google Scholar 

  25. Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodriguez-Perez AI (2013) Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Mov Disord 28(10):1337–1342. https://doi.org/10.1002/mds.25614

    Article  PubMed  CAS  Google Scholar 

  26. Labandeira-Garcia JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodriguez-Perez AI (2014) Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat 8:67. https://doi.org/10.3389/fnana.2014.00067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fandriks L (2011) The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf) 201(1):157–167. https://doi.org/10.1111/j.1748-1716.2010.02165.x

    Article  CAS  Google Scholar 

  28. Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS (2012) Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther 35(4):414–428. https://doi.org/10.1111/j.1365-2036.2011.04971.x

    Article  PubMed  CAS  Google Scholar 

  29. Shi Y, Liu T, He L, Dougherty U, Chen L, Adhikari S, Alpert L, Zhou G et al (2016) Activation of the renin-angiotensin system promotes colitis development. Sci Rep 6(1):27552. https://doi.org/10.1038/srep27552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang GD, Wang XY, Hu HZ, Fang XC, Liu S, Gao N, Xia Y, Wood JD (2005) Angiotensin receptors and actions in guinea pig enteric nervous system. Am J Physiol Gastrointest Liver Physiol 289(3):G614–G626. https://doi.org/10.1152/ajpgi.00119.2005

    Article  PubMed  CAS  Google Scholar 

  31. Nishihara T, Matsuda M, Araki H, Oshima K, Kihara S, Funahashi T, Shimomura I (2006) Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology 131(3):853–861. https://doi.org/10.1053/j.gastro.2006.06.015

    Article  PubMed  CAS  Google Scholar 

  32. Okawada M, Koga H, Larsen SD, Showalter HD, Turbiak AJ, Jin X, Lucas PC, Lipka E et al (2011) Use of enterally delivered angiotensin II type Ia receptor antagonists to reduce the severity of colitis. Dig Dis Sci 56(9):2553–2565. https://doi.org/10.1007/s10620-011-1651-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig 69(2):238–249

    PubMed  CAS  Google Scholar 

  34. Kim JJ, Shajib MS, Manocha MM, Khan WI (2012) Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp (60). https://doi.org/10.3791/3678

  35. Breynaert C, Dresselaers T, Perrier C, Arijs I, Cremer J, Van Lommel L, Van Steen K, Ferrante M et al (2013) Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn’s disease. PLoS One 8(7):e68876. https://doi.org/10.1371/journal.pone.0068876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dominguez-Meijide A, Villar-Cheda B, Garrido-Gil P, Sierrra-Paredes G, Guerra MJ, Labandeira-Garcia JL (2014) Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA. Neuropharmacology 76(Pt A):156–168. https://doi.org/10.1016/j.neuropharm.2013.07.016

    Article  PubMed  CAS  Google Scholar 

  37. Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110(42):E4016–E4025. https://doi.org/10.1073/pnas.1309143110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lundblad M, Decressac M, Mattsson B, Bjorklund A (2012) Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc Natl Acad Sci U S A 109(9):3213–3219. https://doi.org/10.1073/pnas.1200575109

    Article  PubMed  PubMed Central  Google Scholar 

  39. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) alpha-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33(12):559–568. https://doi.org/10.1016/j.tins.2010.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL (2017) Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 62:277–290. https://doi.org/10.1016/j.bbi.2017.02.013

    Article  PubMed  CAS  Google Scholar 

  41. Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, Labandeira-Garcia JL (2010) Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci 32(10):1695–1706. https://doi.org/10.1111/j.1460-9568.2010.07448.x

    Article  PubMed  Google Scholar 

  42. Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM, Zhao H, Swain GM et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4):844–854 e844. https://doi.org/10.1053/j.gastro.2011.12.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30(5):735–741. https://doi.org/10.1111/j.1460-9568.2009.06873.x

    Article  PubMed  Google Scholar 

  44. Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F (2008) Parkinson’s disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol Motil 20(7):741–749. https://doi.org/10.1111/j.1365-2982.2008.01162.x

    Article  PubMed  CAS  Google Scholar 

  45. Zizzo MG, Mule F, Mastropaolo M, Serio R (2010) D1 receptors play a major role in the dopamine modulation of mouse ileum contractility. Pharmacol Res 61(5):371–378. https://doi.org/10.1016/j.phrs.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  46. Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S, Greene JG (2007) Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 207(1):4–12. https://doi.org/10.1016/j.expneurol.2007.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Drolet RE, Cannon JR, Montero L, Greenamyre JT (2009) Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 36(1):96–102. https://doi.org/10.1016/j.nbd.2009.06.017

    Article  PubMed  CAS  Google Scholar 

  48. Lai SW, Liao KF, Lin CL, Sung FC (2014) Irritable bowel syndrome correlates with increased risk of Parkinson’s disease in Taiwan. Eur J Epidemiol 29(1):57–62. https://doi.org/10.1007/s10654-014-9878-3

    Article  PubMed  Google Scholar 

  49. Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Juzwiak S, Kurzawski G, Tan EK, Drozdzik M (2007) CARD15 variants in patients with sporadic Parkinson’s disease. Neurosci Res 57(3):473–476. https://doi.org/10.1016/j.neures.2006.11.012

    Article  PubMed  CAS  Google Scholar 

  50. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutierrez C, Micheli FE, Benarroch EE (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260(5):1332–1338. https://doi.org/10.1007/s00415-012-6801-2

    Article  PubMed  CAS  Google Scholar 

  51. Kupsky WJ, Grimes MM, Sweeting J, Bertsch R, Cote LJ (1987) Parkinson’s disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology 37(7):1253–1255. https://doi.org/10.1212/WNL.37.7.1253

    Article  PubMed  CAS  Google Scholar 

  52. Qualman SJ, Haupt HM, Yang P, Hamilton SR (1984) Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson’s disease. Gastroenterology 87(4):848–856

    PubMed  CAS  Google Scholar 

  53. Shannon KM, Keshavarzian A, Mutlu E, Dodiya HB, Daian D, Jaglin JA, Kordower JH (2012) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 27(6):709–715. https://doi.org/10.1002/mds.23838

    Article  PubMed  Google Scholar 

  54. Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG (2012) Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 124(5):665–680. https://doi.org/10.1007/s00401-012-1040-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA (2017) Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections. Acta Neuropathol 133(3):381–393. https://doi.org/10.1007/s00401-016-1661-y

    Article  PubMed  CAS  Google Scholar 

  56. Hathaway CA, Appleyard CB, Percy WH, Williams JL (1999) Experimental colitis increases blood-brain barrier permeability in rabbits. Am J Phys 276(5 Pt 1):G1174–G1180

    CAS  Google Scholar 

  57. Natah SS, Mouihate A, Pittman QJ, Sharkey KA (2005) Disruption of the blood-brain barrier during TNBS colitis. Neurogastroenterol Motil 17(3):433–446. https://doi.org/10.1111/j.1365-2982.2005.00654.x

    Article  PubMed  CAS  Google Scholar 

  58. Del Rey NL, Blesa J (2017) Parkinson’s disease: oh my gut! Mov Disord 32(3):396. https://doi.org/10.1002/mds.26933

    Article  PubMed  Google Scholar 

  59. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480e1412. https://doi.org/10.1016/j.cell.2016.11.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McCarthy CA, Widdop RE, Denton KM, Jones ES (2013) Update on the angiotensin AT(2) receptor. Curr Hypertens Rep 15(1):25–30. https://doi.org/10.1007/s11906-012-0321-4

    Article  PubMed  CAS  Google Scholar 

  61. Padia SH, Carey RM (2013) AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch 465(1):99–110. https://doi.org/10.1007/s00424-012-1146-3

    Article  PubMed  CAS  Google Scholar 

  62. Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL (2013) Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct 218(2):373–388. https://doi.org/10.1007/s00429-012-0402-9

    Article  PubMed  CAS  Google Scholar 

  63. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109(2):656–669. https://doi.org/10.1111/j.1471-4159.2009.05999.x

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL (2008) Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 31(1):58–73. https://doi.org/10.1016/j.nbd.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  65. Valenzuela R, Barroso-Chinea P, Villar-Cheda B, Joglar B, Munoz A, Lanciego JL, Labandeira-Garcia JL (2010) Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol 69(11):1130–1142. https://doi.org/10.1097/NEN.0b013e3181fa0308

    Article  PubMed  CAS  Google Scholar 

  66. Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, Lanciego JL, Labandeira-Garcia JL (2017) Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct 222(6):2559–2571. https://doi.org/10.1007/s00429-016-1357-z

    Article  PubMed  CAS  Google Scholar 

  67. Brown DC, Steward LJ, Ge J, Barnes NM (1996) Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol 118(2):414–420. https://doi.org/10.1111/j.1476-5381.1996.tb15418.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mendelsohn FA, Jenkins TA, Berkovic SF (1993) Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res 613(2):221–229. https://doi.org/10.1016/0006-8993(93)90902-Y

    Article  PubMed  CAS  Google Scholar 

  69. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, Jhaveri VV, Poczobutt AM et al (2007) Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener 2(1):1. https://doi.org/10.1186/1750-1326-2-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rey P, Lopez-Real A, Sanchez-Iglesias S, Munoz A, Soto-Otero R, Labandeira-Garcia JL (2007) Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 28(4):555–567. https://doi.org/10.1016/j.neurobiolaging.2006.02.018

    Article  PubMed  CAS  Google Scholar 

  71. Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8(1):129. https://doi.org/10.1186/1742-2094-8-129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen J, Yang S, Hu S, Choudhry MA, Bland KI, Chaudry IH (2008) Estrogen prevents intestinal inflammation after trauma-hemorrhage via downregulation of angiotensin II and angiotensin II subtype I receptor. Am J Physiol Gastrointest Liver Physiol 295(5):G1131–G1137. https://doi.org/10.1152/ajpgi.90443.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Takagi T, Yoshida N, Isozaki Y, Shimozawa M, Katada K, Manabe H, Hanada O, Kokura S et al (2006) CV-11974, angiotensin II type I receptor antagonist, protects against ischemia-reperfusion injury of the small intestine in rats. Eur J Pharmacol 535(1–3):283–290. https://doi.org/10.1016/j.ejphar.2006.02.005

    Article  PubMed  CAS  Google Scholar 

  74. Matteoli G, Boeckxstaens GE (2013) The vagal innervation of the gut and immune homeostasis. Gut 62(8):1214–1222. https://doi.org/10.1136/gutjnl-2012-302550

    Article  PubMed  CAS  Google Scholar 

  75. Surowka AD, Krygowska-Wajs A, Ziomber A, Thor P, Chrobak AA, Szczerbowska-Boruchowska M (2015) Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats. NeuroMolecular Med 17(2):178–191. https://doi.org/10.1007/s12017-015-8349-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA (2017) Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimul 10(6):1045–1054. https://doi.org/10.1016/j.brs.2017.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  77. Svensson E, Horvath-Puho E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sorensen HT (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78(4):522–529. https://doi.org/10.1002/ana.24448

    Article  PubMed  Google Scholar 

  78. Tysnes OB, Kenborg L, Herlofson K, Steding-Jessen M, Horn A, Olsen JH, Reichmann H (2015) Does vagotomy reduce the risk of Parkinson’s disease? Ann Neurol 78(6):1011–1012. https://doi.org/10.1002/ana.24531

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pilar Aldrey, Iria Novoa, and Cristina Gianzo for their technical assistance.

Funding

This study is financially supported by Spanish Ministry of Economy and Competitiveness (BFU2015-70523), Spanish Ministry of Health (RD12/0019/0020, RD16/0011/0016 and CIBERNED), Galician Government (XUGA, Conselleria de Educacion; GRC2014/002), and FEDER (Regional European Development Fund).

Author information

Authors and Affiliations

Authors

Contributions

JLL-G and PG-G conceived and supervised the whole study and wrote the manuscript; PG-G performed the experimental models and lesions; AD-M and PG-G performed HPLC analysis; and AR-P and MJG performed WB and PCR analyses. All authors edited the manuscript.

Corresponding author

Correspondence to Jose L. Labandeira-Garcia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent for Publication

Not applicable.

Research Involving Animals

All procedures performed in studies involving animals were in accordance with with the European Directive 2010/63/EU and the Spanish RD/53/2013 for the protection of animals used for scientific purposes and were approved by the corresponding committee of the University of Santiago de Compostela (Spain) and the Galician Government (XUGA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido-Gil, P., Rodriguez-Perez, A.I., Dominguez-Meijide, A. et al. Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson’s Disease Models. Mol Neurobiol 55, 7297–7316 (2018). https://doi.org/10.1007/s12035-018-0937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0937-8

Keywords

Navigation