Skip to main content
Log in

Accumulation of Mitochondrial DNA Common Deletion Since The Preataxic Stage of Machado-Joseph Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Molecular alterations reflecting pathophysiologic changes thought to occur many years before the clinical onset of Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), a late-onset polyglutamine disorder, remain unidentified. The absence of molecular biomarkers hampers clinical trials, which lack sensitive measures of disease progression, preventing the identification of events occurring prior to clinical onset. Our aim was to analyse the mtDNA content and the amount of the common deletion (m.8482_13460del4977) in a cohort of 16 preataxic MJD mutation carriers, 85 MJD patients and 101 apparently healthy age-matched controls. Relative expression levels of RPPH1, MT-ND1 and MT-ND4 genes were assessed by quantitative real-time PCR. The mtDNA content was calculated as the difference between the expression levels of a mitochondrial gene (MT-ND1) and a nuclear gene (RPPH1); the amount of mtDNA common deletion was calculated as the difference between expression levels of a deleted (MT-ND4) and an undeleted (MT-ND1) mitochondrial genes. mtDNA content in MJD carriers was similar to that of healthy age-matched controls, whereas the percentage of the common deletion was significantly increased in MJD subjects, and more pronounced in the preclinical stage (p < 0.05). The BCL2/BAX ratio was decreased in preataxic carriers compared to controls, suggesting that the mitochondrial-mediated apoptotic pathway is altered in MJD. Our findings demonstrate for the first time that accumulation of common deletion starts in the preclinical stage. Such early alterations provide support to the current understanding that any therapeutic intervention in MJD should start before the overt clinical phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yu Y-C, Kuo C-L, Cheng W-L, Liu CS, Hsieh M (2009) Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J Neurosci Res 87:1884–1891. https://doi.org/10.1002/jnr.22011

    Article  CAS  PubMed  Google Scholar 

  2. Ramos A, Kazachkova N, Silva F, Maciel P, Silva-Fernandes A, Duarte-Silva S, Santos C, Lima M (2015) Differential mtDNA damage patterns in a transgenic mouse model of Machado-Joseph disease (MJD/SCA3). J Mol Neurosci 55:449–453. https://doi.org/10.1007/s12031-014-0360-1

    Article  CAS  PubMed  Google Scholar 

  3. Kazachkova N, Raposo M, Montiel R, Cymbron T, Bettencourt C, Silva-Fernandes A, Silva S, Maciel P et al (2013) Patterns of mitochondrial DNA damage in blood and brain tissues of a transgenic mouse model of Machado-Joseph disease. Neurodegener Dis 11:206–214. https://doi.org/10.1159/000339207

    Article  CAS  PubMed  Google Scholar 

  4. Zeng A, Liu X, Shen L, Li W, Ding Z, Bai Y, Lu J (2012) Analysis of mitochondrial DNA variations in a Chinese family with spinocerebellar ataxia. J Clin Neurosci 19:60–64. https://doi.org/10.1016/j.jocn.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  5. Liu C-S, Cheng W-L, Kuo S-J, Li JY, Soong BW, Wei YH (2008) Depletion of mitochondrial DNA in leukocytes of patients with poly-Q diseases. J Neurol Sci 264:18–21. https://doi.org/10.1016/j.jns.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  6. Bettencourt C, Lima M (2011) Machado-Joseph disease: from first descriptions to new perspectives. Orphanet J Rare Dis 6:35. https://doi.org/10.1186/1750-1172-6-35

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maas RPPWM, van Gaalen J, Klockgether T, van de Warrenburg BPC (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85:96–103. https://doi.org/10.1212/WNL.0000000000001711

    Article  PubMed  Google Scholar 

  8. Evers MM, Toonen LJA, van Roon-Mom WMC (2014) Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 49:1513–1531. https://doi.org/10.1007/s12035-013-8596-2

    Article  CAS  PubMed  Google Scholar 

  9. Pacheco LS, da Silveira AF, Trott A, Houenou LJ, Algarve TD, Belló C, Lenz AF, Mânica-Cattani MF et al (2013) Association between Machado-Joseph disease and oxidative stress biomarkers. Mutat Res 757:99–103. https://doi.org/10.1016/j.mrgentox.2013.06.023

    Article  CAS  Google Scholar 

  10. Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T et al (2011) FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 20:2928–2941. https://doi.org/10.1093/hmg/ddr197

    Article  CAS  PubMed  Google Scholar 

  11. Laço MN, Oliveira CR, Paulson HL, Rego AC (2012) Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim Biophys Acta 1822:139–149. https://doi.org/10.1016/j.bbadis.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  12. Hsu J-Y, Jhang Y-L, Cheng P-H, Chang YF, Mao SH, Yang HI, Lin CW, Chen CM et al (2017) The truncated C-terminal fragment of mutant ATXN3 disrupts mitochondria dynamics in spinocerebellar ataxia type 3 models. Front Mol Neurosci 10:196. https://doi.org/10.3389/fnmol.2017.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, Tsai SR, Kakizuka A et al (2006) Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis 21:333–345. https://doi.org/10.1016/j.nbd.2005.07.011

    Article  CAS  PubMed  Google Scholar 

  14. Tsai H-F, Tsai H-J, Hsieh M (2004) Full-length expanded ataxin-3 enhances mitochondrial-mediated cell death and decreases Bcl-2 expression in human neuroblastoma cells. Biochem Biophys Res Commun 324:1274–1282. https://doi.org/10.1016/j.bbrc.2004.09.192

    Article  CAS  PubMed  Google Scholar 

  15. Bettencourt C, Fialho RN, Santos C, Montiel R, Bruges-Armas J, Maciel P, Lima M (2008) Segregation distortion of wild-type alleles at the Machado-Joseph disease locus: a study in normal families from the Azores islands (Portugal). J Hum Genet 53:333–339. https://doi.org/10.1007/s10038-008-0261-7

    Article  CAS  PubMed  Google Scholar 

  16. Grady JP, Murphy JL, Blakely EL, Haller RG, Taylor RW, Turnbull DM, Tuppen HAL (2014) Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle. PLoS One 9:e114462. https://doi.org/10.1371/journal.pone.0114462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raposo M (2016) Predicting and tracking Machado-Joseph disease: biomarkers of diagnosis and prognosis. Universidade dos Açores

  18. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: BCL-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317. https://doi.org/10.1007/s00204-014-1448-7

    Article  CAS  PubMed  Google Scholar 

  19. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  20. Kazachkova N, Lima M (2015) Towards a therapeutic intervention in polyglutamine ataxias: from models to clinical trials. In: Atta-ur-Rahman (ed) Frontiers in clinical drug research—CNS and neurological disorders. pp 77–130

  21. Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542. https://doi.org/10.1038/nrg3966

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, Liu C, Huang M et al (2016) The Machado-Joseph disease Deubiquitinase Ataxin-3 regulates the stability and apoptotic function of p53. PLoS Biol 14:e2000733. https://doi.org/10.1371/journal.pbio.2000733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, Zhang HL, Matsuura T et al (2015) Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 11:e1004834. https://doi.org/10.1371/journal.pgen.1004834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK et al (2015) The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3′-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 11:e1004749. https://doi.org/10.1371/journal.pgen.1004749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Massey TH, Jones L (2018) The central role of DNA damage and repair in CAG repeat diseases. Dis Model Mech 11:dmm031930. https://doi.org/10.1242/dmm.031930

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671. https://doi.org/10.1038/nrm3439

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by FEDER funds through the Operational Competitiveness Programme—COMPETE and by National Funds through FCT—Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-028753 (PTDC/DTP/PIC/0370/2012). A PhD fellowship M3.1.2/F/006/2011 (MR) and postdoctoral fellowships M3.1.7/F/031/2011 (AR) and M3.1.3/F/004/2009 (NK) were supported by Fundo Regional para a Ciência (FRC), Governo dos Açores. CB is supported by the Wellcome Trust (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mafalda Raposo.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raposo, M., Ramos, A., Santos, C. et al. Accumulation of Mitochondrial DNA Common Deletion Since The Preataxic Stage of Machado-Joseph Disease. Mol Neurobiol 56, 119–124 (2019). https://doi.org/10.1007/s12035-018-1069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1069-x

Keywords

Navigation