Skip to main content

Advertisement

Log in

Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gregory A, Polster BJ, Hayflick SJ (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46(2):73–80

    Article  CAS  Google Scholar 

  2. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348(1):33–40

    Article  CAS  Google Scholar 

  3. Di Meo I, Tiranti V (2018) Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 22(2):272–284. https://doi.org/10.1016/j.ejpn.2018.01.008

    Article  PubMed  Google Scholar 

  4. Arber CE, Li A, Houlden H, Wray S (2016) Review: insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 42(3):220–241. https://doi.org/10.1111/nan.12242

    Article  CAS  PubMed  Google Scholar 

  5. Levi S, Finazzi D (2014) Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5:99

    Article  Google Scholar 

  6. Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D'Amato I, Giordano C, d'Amati G et al (2012) Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet 21(24):5294–5305. https://doi.org/10.1093/hmg/dds380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathologica/Association of Polish Neuropathologists and Medical Research Centre. Folia Neuropathol 43(4):286–296

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Afshar K, Gonczy P, DiNardo S, Wasserman SA (2001) Fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster. Genetics 157(3):1267–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leonardi R, Zhang YM, Lykidis A, Rock CO, Jackowski S (2007) Localization and regulation of mouse pantothenate kinase 2. FEBS Lett 581(24):4639–4644

    Article  CAS  Google Scholar 

  10. Kuo YM, Duncan JL, Westaway SK, Yang H, Nune G, Xu EY, Hayflick SJ, Gitschier J (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14(1):49–57

    Article  CAS  Google Scholar 

  11. Kuo YM, Hayflick SJ, Gitschier J (2007) Deprivation of pantothenic acid elicits a movement disorder and azoospermia in a mouse model of pantothenate kinase-associated neurodegeneration. J Inherit Metab Dis 30(3):310–317

    Article  CAS  Google Scholar 

  12. Bosveld F, Rana A, van der Wouden PE, Lemstra W, Ritsema M, Kampinga HH, Sibon OC (2008) De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum Mol Genet 17(13):2058–2069

    Article  CAS  Google Scholar 

  13. Rana A, Seinen E, Siudeja K, Muntendam R, Srinivasan B, van der Want JJ, Hayflick S, Reijngoud DJ et al (2010) Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci U S A 107(15):6988–6993

    Article  CAS  Google Scholar 

  14. Campanella A, Privitera D, Guaraldo M, Rovelli E, Barzaghi C, Garavaglia B, Santambrogio P, Cozzi A et al (2012) Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Hum Mol Genet 21(18):4049–4059. https://doi.org/10.1093/hmg/dds229

    Article  CAS  PubMed  Google Scholar 

  15. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics/editorial board, Jonathan L Haines [et al. Chapter 7:Unit7 20. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  16. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349

    Article  CAS  Google Scholar 

  17. Dang TN, Bishop GM, Dringen R, Robinson SR (2010) The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin. Glia 58(1):55–65

    Article  Google Scholar 

  18. Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J et al (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5(1):37–50

    Article  CAS  Google Scholar 

  19. Boulton M, Marshall J (1985) Repigmentation of human retinal pigment epithelial cells in vitro. Exp Eye Res 41(2):209–218

    Article  CAS  Google Scholar 

  20. Biesemeier A, Schraermeyer U, Eibl O (2011) Quantitative chemical analysis of ocular melanosomes in stained and non-stained tissues. Micron 42(5):461–470. https://doi.org/10.1016/j.micron.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  21. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331(2):370–375. https://doi.org/10.1016/j.ab.2004.03.049

    Article  CAS  PubMed  Google Scholar 

  22. Tarohda T, Ishida Y, Kawai K, Yamamoto M, Amano R (2005) Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats. Anal Bioanal Chem 383(2):224–234. https://doi.org/10.1007/s00216-005-3423-x

    Article  CAS  PubMed  Google Scholar 

  23. Shibata K, Nakai T, Fukuwatari T (2012) Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Anal Biochem 430(2):151–155. https://doi.org/10.1016/j.ab.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  25. Santambrogio P, Erba BG, Campanella A, Cozzi A, Causarano V, Cremonesi L, Galli A, Della Porta MG et al (2011) Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation. Haematologica 96(10):1424–1432. https://doi.org/10.3324/haematol.2011.042952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Arribas M, Pizarro-Estrella E, Gomez-Sanchez R, Yakhine-Diop SM, Gragera-Hidalgo A, Cristo A, Bravo-San Pedro JM, Gonzalez-Polo RA et al (2016) IFDOTMETER: a new software application for automated immunofluorescence analysis. J Lab Autom 21(2):246–259. https://doi.org/10.1177/2211068215600650

    Article  PubMed  Google Scholar 

  27. Drouin-Ouellet J, Lau S, Brattas PL, Rylander Ottosson D, Pircs K, Grassi DA, Collins LM, Vuono R et al (2017) REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways. EMBO Mol Med 9(8):1117–1131. https://doi.org/10.15252/emmm.201607471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shrigley S, Pircs K, Barker RA, Parmar M, Drouin-Ouellet J (2018) Simple generation of a high yield culture of induced neurons from human adult skin fibroblasts. J Vis Exp 132. https://doi.org/10.3791/56904

  29. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875. https://doi.org/10.1038/nbt0997-871

    Article  CAS  PubMed  Google Scholar 

  30. Luckenbach MW, Green WR, Miller NR, Moser HW, Clark AW, Tennekoon G (1983) Ocular clinicopathologic correlation of Hallervorden-Spatz syndrome with acanthocytosis and pigmentary retinopathy. Am J Ophthalmol 95(3):369–382

    Article  CAS  Google Scholar 

  31. Swaiman KF, Smith SA, Trock GL, Siddiqui AR (1983) Sea-blue histiocytes, lymphocytic cytosomes, movement disorder and 59Fe-uptake in basal ganglia: Hallervorden-Spatz disease or ceroid storage disease with abnormal isotope scan? Neurology 33(3):301–305

    Article  CAS  Google Scholar 

  32. Defendini R, Markesbery WR, Mastri AR, Duffy PE (1973) Hallervorden-Spatz disease and infantile neuroaxonal dystrophy. Ultrastructural observations, anatomical pathology and nosology. J Neurol Sci 20(1):7–23

    Article  CAS  Google Scholar 

  33. Park BE, Netsky MG, Betsill WL Jr (1975) Pathogenesis of pigment and spheroid formation in Hallervorden-Spatz syndrome and related disorders. Neurology 25(12):1172–1178

    Article  CAS  Google Scholar 

  34. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese G, Bille JF, Holz FG (2006) Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:sapphire laser. Invest Ophthalmol Vis Sci 47(10):4553–4557. https://doi.org/10.1167/iovs.05-1562

    Article  PubMed  Google Scholar 

  35. Newbury DE, Ritchie NW (2015) Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci 50(2):493–518. https://doi.org/10.1007/s10853-014-8685-2

    Article  CAS  PubMed  Google Scholar 

  36. Shioji K, Oyama Y, Okuma K, Nakagawa H (2010) Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria. Bioorg Med Chem Lett 20(13):3911–3915. https://doi.org/10.1016/j.bmcl.2010.05.017

    Article  CAS  PubMed  Google Scholar 

  37. Orellana DI, Santambrogio P, Rubio A, Yekhlef L, Cancellieri C, Dusi S, Giannelli SG, Venco P et al (2016) Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med 8(10):1197–1211. https://doi.org/10.15252/emmm.201606391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santambrogio P, Dusi S, Guaraldo M, Rotundo LI, Broccoli V, Garavaglia B, Tiranti V, Levi S (2015) Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiol Dis 81:144–153. https://doi.org/10.1016/j.nbd.2015.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ingrassia R, Memo M, Garavaglia B (2017) Ferrous iron up-regulation in fibroblasts of patients with beta propeller protein-associated neurodegeneration (BPAN). Front Genet 8:18. https://doi.org/10.3389/fgene.2017.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nunez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25(4):761–776. https://doi.org/10.1007/s10534-012-9523-0

    Article  CAS  PubMed  Google Scholar 

  41. Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29(4):665–678. https://doi.org/10.1007/s10534-016-9942-4

    Article  CAS  PubMed  Google Scholar 

  42. Salvador GA, Uranga RM, Giusto NM (2010) Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2011:720658–720659. https://doi.org/10.4061/2011/720658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kruer MC (2013) The neuropathology of neurodegeneration with brain iron accumulation. Int Rev Neurobiol 110:165–194. https://doi.org/10.1016/B978-0-12-410502-7.00009-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsunaga T, Kotamraju S, Kalivendi SV, Dhanasekaran A, Joseph J, Kalyanaraman B (2004) Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem 279(27):28614–28624. https://doi.org/10.1074/jbc.M400977200

    Article  CAS  PubMed  Google Scholar 

  45. Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT (2008) The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci 65(11):1669–1682. https://doi.org/10.1007/s00018-008-7581-9

    Article  CAS  PubMed  Google Scholar 

  46. Jolly RD, Douglas BV, Davey PM, Roiri JE (1995) Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41(Suppl 2):283–295

    Article  CAS  Google Scholar 

  47. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111. https://doi.org/10.1196/annals.1404.008

    Article  CAS  PubMed  Google Scholar 

  48. Konig J, Ott C, Hugo M, Jung T, Bulteau AL, Grune T, Hohn A (2017) Mitochondrial contribution to lipofuscin formation. Redox Biol 11:673–681. https://doi.org/10.1016/j.redox.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frolova MS, Surin AM, Braslavski AV, Vekshin NL (2015) Degradation of mitochondria to lipofuscin upon heating and illumination. Biofizika 60(6):1125–1131

    CAS  PubMed  Google Scholar 

  50. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5):611–619

    Article  CAS  Google Scholar 

  51. Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJ, Katzeff H (2005) Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic Biol Med 38(8):1093–1101. https://doi.org/10.1016/j.freeradbiomed.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Hohn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 1:140–144. https://doi.org/10.1016/j.redox.2013.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 1780(11):1291–1303. https://doi.org/10.1016/j.bbagen.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  54. Reeg S, Grune T (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal 23(3):239–255. https://doi.org/10.1089/ars.2014.6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lill R, Srinivasan V, Muhlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22:111–119. https://doi.org/10.1016/j.mib.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  56. Lu C, Cortopassi G (2007) Frataxin knockdown causes loss of cytoplasmic iron-sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457(1):111–122. https://doi.org/10.1016/j.abb.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  57. Poli M, Derosas M, Luscieti S, Cavadini P, Campanella A, Verardi R, Finazzi D, Arosio P. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol Dis. 2010 Aug 39(2):204–10. https://doi.org/10.1016/j.nbd.2010.04.009. Epub 2010 Apr 23

    Article  CAS  Google Scholar 

  58. Huang ML, Lane DJ, Richardson DR (2011) Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid Redox Signal 15(12):3003–3019. https://doi.org/10.1089/ars.2011.3921

    Article  CAS  PubMed  Google Scholar 

  59. Leonardi R, Zhang YM, Rock CO, Jackowski S (2005) Coenzyme A: back in action. Prog Lipid Res 44(2–3):125–153. https://doi.org/10.1016/j.plipres.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  60. Leonardi R, Jackowski S (2007) Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus 2(2). https://doi.org/10.1128/ecosalplus.3.6.3.4

  61. Garcia M, Leonardi R, Zhang YM, Rehg JE, Jackowski S (2012) Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. PLoS One 7(7):e40871. https://doi.org/10.1371/journal.pone.0040871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank María Pilar Burgos Domenech from IRNAS (Instituto de Recursos Naturales y Agrobiología de Sevilla) for her help with the ICP-MS assays and Carmen Jiménez de Haro from Instituto de Ciencia de Materiales de Sevilla (ICMS-US-CSIC) for her help with the SEM/EDX assays. We also thank Drs. Javier Abril Jaramillo, Anabel Vintimilla, Luis González Gutiérrez Solana, Pablo Mir, Marcos Madruga, Silvia Jesús, and Isidoro Caraballo for their support to the project.

Funding

This work was supported by FIS PI16/00786 grant, Instituto de Salud Carlos III, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), Proyectos de Investigación de Excelencia de la Junta de Andalucía CTS-5725 and BIO-122, DGICYT BFU2015-64536-R, and by AEPMI (Asociación de Enfermos de Patología Mitocondrial) and ENACH (Asociación de Enfermos de Neurodegeneración con Acumulación Cerebral de Hierro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Sánchez-Alcázar.

Electronic Supplementary Material

ESM 1

(PDF 2105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Córdoba, M., Fernández Khoury, A., Villanueva-Paz, M. et al. Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Mol Neurobiol 56, 3638–3656 (2019). https://doi.org/10.1007/s12035-018-1333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1333-0

Keywords

Navigation