Skip to main content

Advertisement

Log in

Bilirubin and Ischemic Stroke: Rendering the Current Paradigm to Better Understand the Protective Effects of Bilirubin

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Novel and innovative methods are critical in fostering new treatments and improving clinical outcomes in patients who suffer from ischemic stroke. Bilirubin has long been considered metabolic waste that can be harmful to the body; however, it is now becoming recognized as one of the body’s most potent antioxidant, anti-inflammatory, and neuroprotective molecules. These properties facilitate bilirubin’s anti-atherogenic effects to impede and prevent the formation of thrombi in ischemic stroke. These functions allow for protection from neuronal injury during an ischemic state and suggest that elevated bilirubin levels may be linked to a lower rate of morbidity and mortality. Therefore, here we discuss the pathophysiology of stroke and the molecular properties of bilirubin to better understand their beneficial relationship. We outline clinical studies looking at the relationship between serum bilirubin levels and ischemic stroke prevalence. At this time, few studies have rigorously looked at the relationship between bilirubin and ischemic stroke, whether it is positive or negative. Thus, rigorous research is needed to provide evidence supporting the current studies, expand on these studies, and facilitate their translation to bedside therapy for patients who suffer from ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AIS:

acute ischemic stroke

CHD:

coronary heart disease

CRP:

C-reactive protein

HDL:

high-density lipoprotein

HO1:

heme oxygenase 1

HR:

hazard ratio

ICAM:

intracellular adhesion molecule

IS:

ischemic stroke

LAA:

large artery atherosclerosis

LACI:

laclunar infarction

LDL:

low-density lipoprotein

MAPK:

mitrogen-activated protein kinase

NADPH:

nicotinamide adenine dinucleotide phosphate

NFĸB:

nuclear factor kappa B cells

OR:

odds ratio

PACI:

partial anterior circulation infarction

POCI:

posterior circulation infarction

PTEN:

phosphatase and tensin homolog

Q:

quartile

SAO:

small-artery occlusion

SCE:

cardioembolic stroke

SD:

standard deviation

SUE:

stroke of undetermined etiology

SNP:

single-nucleotide polymorphisms

TACI:

total anterior circulation infarction

TIA:

transient ischemic attack

TNF:

tumor necrosis factor

UGT:

uridine diphosphate glucuronosyltransferase

VCAM:

vascular cell adhesion protein

GGT:

gamma-glutamyl transpeptidase

UCB:

unconjugated bilirubin.

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J et al (2017) Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  2. Suh S, Cho YR, Park MK, Kim DK, Cho NH, Lee MK (2018) Relationship between serum bilirubin levels and cardiovascular disease. PLoS One 13:e0193041. https://doi.org/10.1371/journal.pone.0193041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellapart J, Geng S, Dunster K, Timms D, Barnett AG, Boots R, Fraser JF (2010) Intraaortic balloon pump Counterpulsation and cerebral autoregulation: an observational study. BMC Anesthesiol 10:3. https://doi.org/10.1186/1471-2253-10-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ko S-B (2018) Perioperative stroke: pathophysiology and management. Korean J Anesthesiol 71:3–11. https://doi.org/10.4097/kjae.2018.71.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krause GS, White BC, Aust SD et al (1988) Brain cell death following ischemia and reperfusion: a proposed biochemical sequence. Crit Care Med 16:714–726

    Article  CAS  PubMed  Google Scholar 

  6. Hammer MD, Krieger DW (2003) Hypothermia for acute ischemic stroke: not just another neuroprotectant. Neurologist 9:280–289. https://doi.org/10.1097/01.nrl.0000094628.29312.2b

    Article  PubMed  Google Scholar 

  7. Taoufik E, Probert L (2008) Ischemic neuronal damage. Curr Pharm Des 14:3565–3573. https://doi.org/10.2174/138161208786848748

    Article  CAS  PubMed  Google Scholar 

  8. Dávalos A, Castillo J, Serena J, Noya M (1997) Duration of glutamate release after acute ischemic stroke. Stroke 28:708–710

    Article  PubMed  Google Scholar 

  9. Nishizawa Y (2001) Glutamate release and neuronal damage in ischemia. Life Sci 69:369–381

    Article  CAS  PubMed  Google Scholar 

  10. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG et al (2013) Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 368:893–903. https://doi.org/10.1056/NEJMoa1214300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76:S85–S90. https://doi.org/10.1016/j.wneu.2011.07.023

    Article  PubMed  Google Scholar 

  12. Strong K, Mathers C, Bonita R (2007) Preventing stroke: saving lives around the world. Lancet Neurol 6:182–187. https://doi.org/10.1016/S1474-4422(07)70031-5

    Article  PubMed  Google Scholar 

  13. McManus M, Liebeskind DS (2016) Blood pressure in acute ischemic stroke. J Clin Neurol 12:137–146. https://doi.org/10.3988/jcn.2016.12.2.137

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB (1991) Probability of stroke: a risk profile from the Framingham study. Stroke 22:312–318

    Article  CAS  PubMed  Google Scholar 

  15. Folsom AR, Rasmussen ML, Chambless LE, Howard G, Cooper LS, Schmidt MI, Heiss G (1999) Prospective associations of fasting insulin, body fat distribution, and diabetes with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Diabetes Care 22:1077–1083

    Article  CAS  PubMed  Google Scholar 

  16. Air EL, Kissela BM (2007) Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care 30:3131–3140. https://doi.org/10.2337/dc06-1537

    Article  PubMed  Google Scholar 

  17. Tuomilehto J, Rastenyte D, Jousilahti P et al (1996) Diabetes mellitus as a risk factor for death from stroke. Prospective study of the middle-aged Finnish population. Stroke 27:210–215

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Yue X-J, Li H-H, Song ZX, Yan HQ, Zhang P, Gui YK, Chang L et al (2016) Overweight and obesity in young adulthood and the risk of stroke: a meta-analysis. J Stroke Cerebrovasc Dis 25:2995–3004. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.018

    Article  PubMed  Google Scholar 

  19. Lucke-Wold BP, Logsdon AF, Turner RC et al (2014) Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood-brain barrier in a complex neurological disease. Adv Pharmacol 71:411–449. https://doi.org/10.1016/bs.apha.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  20. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K et al (2008) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14:731–737. https://doi.org/10.1038/nm1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chapman SN, Mehndiratta P, Johansen MC et al (2014) Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke. Vasc Health Risk Manag 10:75–87. https://doi.org/10.2147/VHRM.S39213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller DJ, Simpson JR, Silver B (2011) Safety of thrombolysis in acute ischemic stroke: a review of complications, risk factors, and newer technologies. Neurohospitalist 1:138–147. https://doi.org/10.1177/1941875211408731

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kase CS, Furlan AJ, Wechsler LR, Higashida RT, Rowley HA, Hart RG, Molinari GF, Frederick LS et al (2001) Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial. Neurology 57:1603–1610

    Article  CAS  PubMed  Google Scholar 

  24. Berkhemer OA, Fransen PSS, Beumer D, van den Berg L, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372:11–20. https://doi.org/10.1056/NEJMoa1411587

    Article  CAS  PubMed  Google Scholar 

  25. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372:1019–1030. https://doi.org/10.1056/NEJMoa1414905

    Article  CAS  PubMed  Google Scholar 

  26. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372:2285–2295. https://doi.org/10.1056/NEJMoa1415061

    Article  CAS  PubMed  Google Scholar 

  27. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018. https://doi.org/10.1056/NEJMoa1414792

    Article  CAS  PubMed  Google Scholar 

  28. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2296–2306. https://doi.org/10.1056/NEJMoa1503780

    Article  CAS  PubMed  Google Scholar 

  29. Jauch EC, Saver JL, Adams HP et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947. https://doi.org/10.1161/STR.0b013e318284056a

    Article  PubMed  Google Scholar 

  30. Albers GW, Olivot J-M (2007) Intravenous alteplase for ischaemic stroke. Lancet 369:249–250. https://doi.org/10.1016/S0140-6736(07)60120-2

    Article  PubMed  Google Scholar 

  31. Zerna C, Hegedus J, Hill MD (2016) Evolving treatments for acute ischemic stroke. Circ Res 118:1425–1442. https://doi.org/10.1161/CIRCRESAHA.116.307005

    Article  CAS  PubMed  Google Scholar 

  32. Pineda S, Bang OY, Saver JL, Starkman S, Yun SW, Liebeskind DS, Kim D, Ali LK et al (2008) Association of serum bilirubin with ischemic stroke outcomes. J Stroke Cerebrovasc Dis 17:147–152. https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  33. Doré S, Takahashi M, Ferris CD et al (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 96:2445–2450

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shirley R, Ord ENJ, Work LM (2014) Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel) 3:472–501. https://doi.org/10.3390/antiox3030472

    Article  CAS  Google Scholar 

  35. Boon A-C, Hawkins CL, Bisht K, Coombes JS, Bakrania B, Wagner KH, Bulmer AC (2012) Reduced circulating oxidized LDL is associated with hypocholesterolemia and enhanced thiol status in Gilbert syndrome. Free Radic Biol Med 52:2120–2127. https://doi.org/10.1016/j.freeradbiomed.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perlstein TS, Pande RL, Creager MA, Weuve J, Beckman JA (2008) Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999-2004. Am J Med 121 e1:781–788. https://doi.org/10.1016/j.amjmed.2008.03.045

    Article  CAS  Google Scholar 

  37. Kao TW, Chou CH, Wang CC, Chou CC, Hu J, Chen WL (2012) Associations between serum total bilirubin levels and functional dependence in the elderly. Intern Med J 42:1199–1207. https://doi.org/10.1111/j.1445-5994.2011.02620.x

    Article  CAS  PubMed  Google Scholar 

  38. Jørgensen ME, Torp-Pedersen C, Finer N, Caterson I, James WPT, Legler UF, Andersson C (2014) Association between serum bilirubin and cardiovascular disease in an overweight high risk population from the SCOUT trial. Nutr Metab Cardiovasc Dis 24:656–662. https://doi.org/10.1016/j.numecd.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Song G, Jin Y, Liu H, Li C, Han C, Ren S (2014) Higher level of heme oxygenase-1 in patients with stroke than TIA. J Thorac Dis 6:772–777. https://doi.org/10.3978/j.issn.2072-1439.2014.06.28

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kimm H, Yun JE, Jo J, Jee SH (2009) Low serum bilirubin level as an independent predictor of stroke incidence: a prospective study in Korean men and women. Stroke 40:3422–3427. https://doi.org/10.1161/STROKEAHA.109.560649

    Article  CAS  PubMed  Google Scholar 

  41. Luo Y, Li J, Zhang J, Xu Y (2013) Elevated bilirubin after acute ischemic stroke linked to the stroke severity. Int J Dev Neurosci 31:634–638. https://doi.org/10.1016/j.ijdevneu.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  42. Tan G, Yuan R, Hao Z, Lei C, Xiong Y, Xu M, Liu M (2017) Liver function indicators performed better to eliminate cardioembolic stroke than to identify it from stroke subtypes. J Stroke Cerebrovasc Dis 26:230–236. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.032

    Article  PubMed  Google Scholar 

  43. Liu M, Li Y, Li J, Lv X, He Y (2017) Elevated serum total bilirubin levels are negatively associated with major diabetic complications among Chinese senile diabetic patients. J Diabetes Complicat 31:213–217. https://doi.org/10.1016/j.jdiacomp.2016.08.023

    Article  Google Scholar 

  44. Kurzepa J, Bielewicz J, Stelmasiak Z, Bartosik-Psujek H (2009) Serum bilirubin and uric acid levels as the bad prognostic factors in the ischemic stroke. Int J Neurosci 119:2243–2249. https://doi.org/10.3109/00207450903223939

    Article  CAS  PubMed  Google Scholar 

  45. Lee SJ, Jee YH, Jung KJ, Hong S, Shin ES, Jee SH (2017) Bilirubin and Stroke Risk Using a Mendelian Randomization Design. Stroke 48(5):1154–1160

  46. Kawamoto R, Ninomiya D, Kensuke K, Kumagi T (2017) Mildly elevated serum total bilirubin is negatively associated with hemoglobin A1c independently of confounding factors among community-dwelling middle-aged and elderly persons. Journal of Circulating Biomarkers 6:184945441772660

  47. Schwertner HA, Vítek L (2008) Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis 198:1–11. https://doi.org/10.1016/j.atherosclerosis.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Chowdhury JR, Chowdhury NR (2006) Bilirubin metabolism: applied physiology. Curr Paediatr 16:70–74. https://doi.org/10.1016/j.cupe.2005.10.002

    Article  Google Scholar 

  49. Hansen TWR (2010) Core concepts: bilirubin metabolism. Neoreviews 11:e316–e322. https://doi.org/10.1542/neo.11-6-e316

    Article  Google Scholar 

  50. Čvorović J, Passamonti S (2017) Membrane transporters for bilirubin and its conjugates: a systematic review. Front Pharmacol 8:887. https://doi.org/10.3389/fphar.2017.00887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sticova E, Jirsa M (2013) New insights in bilirubin metabolism and their clinical implications. World J Gastroenterol 19:6398–6407. https://doi.org/10.3748/wjg.v19.i38.6398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olusanya BO, Kaplan M, Hansen TWR (2018) Neonatal hyperbilirubinaemia: a global perspective. The Lancet Child & Adolescent Health

  53. Fujiwara R, Haag M, Schaeffeler E, Nies AT, Zanger UM, Schwab M (2018) Systemic regulation of bilirubin homeostasis: potential benefits of hyperbilirubinemia. Hepatology 67:1609–1619. https://doi.org/10.1002/hep.29599

    Article  PubMed  Google Scholar 

  54. Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55:1288–1299. https://doi.org/10.1373/clinchem.2008.121269

    Article  CAS  PubMed  Google Scholar 

  55. Watchko JF, Tiribelli C (2013) Bilirubin-induced neurologic damage—mechanisms and management approaches. N Engl J Med 369:2021–2030. https://doi.org/10.1056/NEJMra1308124

    Article  CAS  PubMed  Google Scholar 

  56. Beuckmann CT, Aoyagi M, Okazaki I, Hiroike T, Toh H, Hayaishi O, Urade Y (1999) Binding of biliverdin, bilirubin, and thyroid hormones to lipocalin-type prostaglandin D synthase. Biochemistry 38:8006–8013. https://doi.org/10.1021/bi990261p

    Article  CAS  PubMed  Google Scholar 

  57. Stocker R, Yamamoto Y, McDonagh AF, Glazer A, Ames B (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  CAS  PubMed  Google Scholar 

  58. Boon A-C, Bulmer AC, Coombes JS, Fassett RG (2014) Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. Am J Physiol Renal Physiol 307:F123–F136. https://doi.org/10.1152/ajprenal.00039.2014

    Article  CAS  PubMed  Google Scholar 

  59. Wagner K-H, Wallner M, Mölzer C, Gazzin S, Bulmer AC, Tiribelli C, Vitek L (2015) Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin Sci 129:1–25. https://doi.org/10.1042/CS20140566

    Article  CAS  Google Scholar 

  60. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F (2007) Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress. Hypertension 50:636–642. https://doi.org/10.1161/HYPERTENSIONAHA.107.092296

    Article  CAS  PubMed  Google Scholar 

  61. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. https://doi.org/10.1038/nature01323

    Article  CAS  PubMed  Google Scholar 

  62. Basiglio CL, Arriaga SM, Pelusa F et al (2009) Complement activation and disease: protective effects of hyperbilirubinaemia. Clin Sci 118:99–113. https://doi.org/10.1042/CS20080540

    Article  Google Scholar 

  63. Haga Y, Tempero MA, Zetterman RK (1996) Unconjugated bilirubin inhibits in vitro cytotoxic T lymphocyte activity of human lymphocytes. Biochim Biophys Acta (BBA) - Mol Basis Dis 1317:65–70. https://doi.org/10.1016/0925-4439(96)00039-7

    Article  Google Scholar 

  64. Wallner M, Bulmer AC, Mölzer C, Müllner E, Marculescu R, Doberer D, Wolzt M, Wagner OF et al (2013) Haem catabolism: a novel modulator of inflammation in Gilbert’s syndrome. Eur J Clin Investig 43:912–919. https://doi.org/10.1111/eci.12120

    Article  CAS  Google Scholar 

  65. Vítek L, Jirsa M, Brodanová M et al (2002) Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis 160:449–456. https://doi.org/10.1016/S0021-9150(01)00601-3

    Article  PubMed  Google Scholar 

  66. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH (2009) Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A 106:5171–5176. https://doi.org/10.1073/pnas.0813132106

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oda E (2014) A decrease in total bilirubin predicted hyper-LDL cholesterolemia in a health screening population. Atherosclerosis 235:334–338. https://doi.org/10.1016/j.atherosclerosis.2014.05.927

    Article  CAS  PubMed  Google Scholar 

  68. Ma Q, Chen S, Klebe D, Zhang JH, Tang J (2013) Adhesion molecules in CNS disorders: biomarker and therapeutic targets. CNS Neurol Disord Drug Targets 12:392–404. https://doi.org/10.2174/1871527311312030012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mazzone GL, Rigato I, Ostrow JD, Bossi F, Bortoluzzi A, Sukowati CHC, Tedesco F, Tiribelli C (2009) Bilirubin inhibits the TNFalpha-related induction of three endothelial adhesion molecules. Biochem Biophys Res Commun 386:338–344. https://doi.org/10.1016/j.bbrc.2009.06.029

    Article  CAS  PubMed  Google Scholar 

  70. Keshavan P, Deem TL, Schwemberger SJ, Babcock GF, Cook-Mills JM, Zucker SD (2005) Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J Immunol 174:3709–3718

    Article  CAS  PubMed  Google Scholar 

  71. Oda E, Kawai R (2012) A possible cross-sectional association of serum total bilirubin with coronary heart disease and stroke in a Japanese health screening population. Heart Vessel 27:29–36. https://doi.org/10.1007/s00380-011-0123-7

    Article  Google Scholar 

  72. Kim J, Yoon S-J, Woo M-H, Kim SH, Kim NK, Kim J, Kim OKJ, Oh SH (2017) Differential impact of serum total bilirubin level on cerebral atherosclerosis and cerebral small vessel disease. PLoS One 12:e0173736. https://doi.org/10.1371/journal.pone.0173736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ahlfors CE (2000) Measurement of plasma unbound unconjugated bilirubin. Anal Biochem 279:130–135. https://doi.org/10.1006/abio.2000.4485

    Article  CAS  PubMed  Google Scholar 

  74. Ziberna L, Martelanc M, Franko M, Passamonti S (2016) Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep 6:29240. https://doi.org/10.1038/srep29240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qaisiya M, Coda Zabetta CD, Bellarosa C, Tiribelli C (2014) Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 26:512–520. https://doi.org/10.1016/j.cellsig.2013.11.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank members of the Doré Lab and the University of Florida Center for Translational Research in Neurodegenerative Disease.

Funding

Part of the funding to support this work was provided by grants from the NIH, the AHA, Brain Aneurysm Foundation, and the Department of Anesthesiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Doré.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakkar, M., Edelenbos, J. & Doré, S. Bilirubin and Ischemic Stroke: Rendering the Current Paradigm to Better Understand the Protective Effects of Bilirubin. Mol Neurobiol 56, 5483–5496 (2019). https://doi.org/10.1007/s12035-018-1440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1440-y

Keywords

Navigation