Skip to main content

Advertisement

Log in

Inflammatory and Oxidative Pathways Are New Drug Targets in Multiple Episode Schizophrenia and Leaky Gut, Klebsiella pneumoniae, and C1q Immune Complexes Are Additional Drug Targets in First Episode Schizophrenia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Breakdown of paracellular and vascular pathways and activated neuroimmune and oxidative pathways was established in (deficit) schizophrenia. The aim of this study was to delineate (a) the differences in these pathways between stable-phase, first (FES) and multiple (MES) episode schizophrenia and (b) the pathways that determine the behavioral-cognitive-physical-psychosocial (BCPS) deterioration in FES/MES. This study included 21 FES and 58 FES patients and 40 healthy controls and measured indicants of serum C1q circulating immune complexes (CIC), leaky gut, immune activation, and oxidative stress toxicity (OSTOX). We constructed a BCPS-worsening index by extracting a latent vector from symptomatic, neurocognitive, and quality of life data. FES was associated with higher IgA CIC-C1q, IgA directed to cadherin, catenin, and plasmalemma vesicle-associated protein, and IgA/IgM to Gram-negative bacteria as compared with FES and controls. In FES patients, the BCPS-worsening score was predicted (48.7%) by IgA to Klebsiella pneumoniae and lowered paraoxonase 1 activity. In MES patients, the BCPS-worsening score was explained (42.7%) by increased tumor necrosis factor-α, OSTOX, and number of episodes. In schizophrenia, 34.0% of the variance in the BCPS-worsening score was explained by IgA to K. pneumoniae, OSTOX, and number of episodes. Increased IgA to K. pneumoniae was the single best predictor of residual psychotic symptoms in FES and MES. This study delineated different mechanistic processes in FES, including breakdown of adherens junctions, bacterial translocation, and IgA CIC-C1q formation, and MES, including immune and oxidative neurotoxic pathways. FES and MES comprise different staging subtypes, i.e., FES and MES with and without worsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during the current study will be made available from the corresponding author on reasonable request once the dataset has been fully exploited by the authors.

References

  1. Maes M, Vojdani A, Galecki P, Kanchanatawan B (2020) How to construct a bottom-up nomothetic network model and disclose novel nosological classes by integrating risk resilience and adverse outcome pathways with the phenome of schizophrenia. Brain Sci 10(9):645. https://doi.org/10.3390/brainsci10090645

    Article  CAS  PubMed Central  Google Scholar 

  2. Almulla AF, Al-Hakeim HK, Maes M (2020) Schizophrenia phenomenology revisited: positive and negative symptoms are strongly related reflective manifestations of an underlying single trait indicating overall severity of schizophrenia. CNS Spectr 20:1–10. https://doi.org/10.1017/S1092852920001182 Epub ahead of print

    Article  Google Scholar 

  3. Maes M, Vojdani A, Geffard M, Moreira EG, Barbosa DS, Michelin AP, Semeão LO, Sirivichayakul S et al (2019) Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways. Biomol Concepts 10(1):209–225

    Article  CAS  PubMed  Google Scholar 

  4. Maes M, Kanchanatawan B (2020) A generalized cognitive decline (GCoDe) partly mediates the effects of neuro-immune and neuro-oxidative toxicity on the symptomatome and lowered quality of life in (deficit) schizophrenia. Preprints 2020110523 https://doi.org/10.20944/preprints202011.0523.v1.

  5. Kanchanatawan B, Sriswasdi S, Maes M (2019) Supervised machine learning to decipher the complex associations between neuro-immune biomarkers and quality of life in schizophrenia. Metab Brain Dis 34(1):267–282. https://doi.org/10.1007/s11011-018-0339-7

    Article  CAS  PubMed  Google Scholar 

  6. Kanchanatawan B, Thika S, Anderson G, Galecki P, Maes M (2018) Affective symptoms in schizophrenia are strongly associated with neurocognitive deficits indicating disorders in executive functions, visual memory, attention and social cognition. Prog Neuro-Psychopharmacol Biol Psychiatry 80(Pt C):168–176

    Article  Google Scholar 

  7. Maes M, Sirivichayakul S, Matsumoto AK, Michelin AP, de Oliveira SL, de Lima Pedrão JV, Moreira EG, Barbosa DS et al (2020) Lowered antioxidant defenses and increased oxidative toxicity are hallmarks of deficit schizophrenia: a nomothetic network psychiatry approach. Mol Neurobiol 57(11):4578–4597

    Article  CAS  PubMed  Google Scholar 

  8. CANTAB (2018) The most validated cognitive research software. http://www.cambridgecognition.com/cantab/ October 1, 2018.

  9. CERAD (1986) CERAD – An overview: the consortium to establish a registry for Alzheimer’s disease. 1986; http://cerad.mc.duke.edu/

  10. Kanchanatawan B, Hemrungrojn S, Thika S, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Anderson G et al (2018) Changes in tryptophan catabolite (TRYCAT) pathway patterning are associated with mild impairments in declarative memory in schizophrenia and deficits in semantic and episodic memory coupled with increased false-memory creation in deficit schizophrenia. Mol Neurobiol 55(6):5184–5201

    Article  CAS  PubMed  Google Scholar 

  11. WHO (1993) Study protocol for the World Health Organization project to develop a quality of life assessment instrument (WHOQOL). Qual Life Res 2(2):153–159

    Article  Google Scholar 

  12. Kanchanatawan B, Sriswasdi S, Thika S, Sirivichayakul S, Carvalho AF, Geffard M, Kubera M, Maes M (2018) Deficit schizophrenia is a discrete diagnostic category defined by neuro-immune and neurocognitive features: results of supervised machine learning. Metab Brain Dis 33(4):1053–1067

    Article  PubMed  Google Scholar 

  13. Kanchanatawan B, Sriswasdi S, Thika S, Stoyanov D, Sirivichayakul S, Carvalho AF, Geffard M, Maes M (2018) Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: results of unsupervised machine learning analysis. J Eval Clin Pract 24(4):879–891

    Article  PubMed  Google Scholar 

  14. Kanchanatawan B, Maes M (2018) The effects of tryptophan catabolites on negative symptoms and deficit schizophrenia are partly mediated by executive impairments: results of partial least squares path modeling. CNS Neurol Disord Drug Targets 17(6):473–486

    Article  CAS  PubMed  Google Scholar 

  15. Kirkpatrick B, Buchanan RW, McKenney PD, Alphs LD, Carpenter WT Jr (1989) The schedule for the deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res 30(2):119–123

    Article  CAS  PubMed  Google Scholar 

  16. Smith RS, Maes M (1995) The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 45(2):135–141. https://doi.org/10.1016/0306-9877(95)90062-4

    Article  CAS  PubMed  Google Scholar 

  17. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpé S (1997) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66(1):1–11. https://doi.org/10.1016/s0165-1781(96)02915-0

    Article  CAS  PubMed  Google Scholar 

  18. Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M (2020) The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Mol Neurobiol 57(2):778–797. https://doi.org/10.1007/s12035-019-01737-z Epub 2019 Aug 31

    Article  CAS  PubMed  Google Scholar 

  19. Maes M, Meltzer HY, Bosmans E (1994) Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 89(5):346–351. https://doi.org/10.1111/j.1600-0447.1994.tb01527.x

    Article  CAS  PubMed  Google Scholar 

  20. Maes M, Meltzer HY, Buckley P, Bosmans E (1995) Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 244(6):325–329. https://doi.org/10.1007/BF02190412

    Article  CAS  PubMed  Google Scholar 

  21. Noto C, Ota VK, Gouvea ES, Rizzo LB, Spindola LM, Honda PH, Cordeiro Q, Belangero SI et al (2014) Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int J Neuropsychopharmacol 18(4):pyu042. https://doi.org/10.1093/ijnp/pyu042

    Article  CAS  PubMed  Google Scholar 

  22. Maes M, Sirivichayakul S, Matsumoto AK, Maes A, Michelin AP, de Oliveira SL, de Lima Pedrão JV, Moreira EG et al (2020) Increased levels of plasma tumor necrosis factor-α mediate schizophrenia symptom dimensions and neurocognitive impairments and are inversely associated with natural IgM directed to malondialdehyde and paraoxonase 1 activity. Mol Neurobiol 57(5):2333–2345. https://doi.org/10.1007/s12035-020-01882-w Epub 2020 Feb 10

    Article  CAS  PubMed  Google Scholar 

  23. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2019) Eotaxin, an endogenous cognitive deteriorating chemokine (ECDC), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox Res 35(1):122–138

    Article  CAS  PubMed  Google Scholar 

  24. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2019) A new schizophrenia model: immune activation is associated with the induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol Disord Drug Targets 18(2):124–140

    Article  CAS  PubMed  Google Scholar 

  25. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Upregulation of the intestinal paracellular pathway with breakdown of tight and adherens junctions in deficit schizophrenia. Mol Neurobiol 56(10):7056–7073. https://doi.org/10.1007/s12035-019-1578-2 Epub 2019 Apr 10

    Article  CAS  PubMed  Google Scholar 

  26. Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M et al (2020) Predictive value of oxidative stress biomarkers in drug-free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 293:113467. https://doi.org/10.1016/j.psychres.2020.113467 Epub 2020 Sep 20

    Article  CAS  PubMed  Google Scholar 

  27. Maes M, Kanchanatawan B, Sirivichayakul S (2019) Carvalho AF (2019) In schizophrenia, deficits in natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol 56(7):5122–5135. https://doi.org/10.1007/s12035-018-1437-6 Epub 2018 Nov 27

    Article  CAS  PubMed  Google Scholar 

  28. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox Res 36(2):306–322

    Article  CAS  PubMed  Google Scholar 

  29. Noto MN, Maes M, Nunes SOV, Ota VK, Rossaneis AC, Verri WA Jr, Cordeiro Q, Belangero SI et al (2019) Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur Neuropsychopharmacol 29(3):416–431. https://doi.org/10.1016/j.euroneuro.2018.12.008 Epub 2018 Dec 26

    Article  CAS  PubMed  Google Scholar 

  30. Dzikowski M, Juchnowicz D, Dzikowska I, Rog J, Próchnicki M, Kozioł M, Karakula-Juchnowicz H (2020) The differences between gluten sensitivity, intestinal biomarkers and immune biomarkers in patients with first episode and chronic schizophrenia. J Clin Med 9(11):3707. https://doi.org/10.3390/jcm9113707

    Article  CAS  PubMed Central  Google Scholar 

  31. Kittirathanapaiboon P, Khamwongpin M (2005) The validity of the mini international neuropsychiatric interview (M.I.N.I.) Thai version: Suanprung Hospital, Department of Mental Health.

  32. Kay SR, Fiszbein A, Opler LA (1986) Negative symptom rating scale: limitations in psychometric and research methodology. Psychiatry Res 19(2):169–173

    Article  CAS  PubMed  Google Scholar 

  33. Andreasen NC (1989) The scale for the assessment of negative symptoms (SANS): conceptual and theoretical foundations. Brit J Psychiatry Suppl 7:49–58

    Article  Google Scholar 

  34. Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  35. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roomruangwong C, Carvalho AF, Geffard M, Maes M (2019) The menstrual cycle may not be limited to the endometrium but also may impact gut permeability. Acta Neuropsychiatr 31(6):294–304. https://doi.org/10.1017/neu.2019.30

    Article  PubMed  Google Scholar 

  37. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistics Soc Series b (Methodological) 57:289–300

    Article  Google Scholar 

  38. Rosen K, Garety P (2005) Predicting recovery from schizophrenia: a retrospective comparison of characteristics at onset of people with single and multiple episodes. Schizophr Bull 31(3):735–750. https://doi.org/10.1093/schbul/sbi017 Epub 2005 Feb 16

    Article  PubMed  Google Scholar 

  39. Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61(4):514–523. https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4%3C514::AID-JCB4%3E3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  40. Gooding JM, Yap KL, Ikura M (2004) The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. Bioessays 26(5):497–511. https://doi.org/10.1002/bies.20033

    Article  CAS  PubMed  Google Scholar 

  41. Vojdani A, Vojdani E (2019) Food-associated autoimmunities: when food turns your immune system against you. In press.

  42. Guo L, Zhang H, Hou Y, Wei T, Liu J (2016) Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp Ther Med 12(3):1639–1644. https://doi.org/10.3892/etm.2016.3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bodey GP, Elting LS, Rodriquez S, Klebsiella Bacteremia HM (1989) a 10-year review in a cancer institution. Cancer 64(11):2368–2376. https://doi.org/10.1002/1097-0142(19891201)64:1

    Article  CAS  PubMed  Google Scholar 

  44. García de la Torre M, Romero-Vivas J, Martínez-Beltrán J, Guerrero A, Meseguer M, Bouza E (1985) Klebsiella bacteremia: an analysis of 100 episodes. Rev Infect Dis 7(2):143–150. https://doi.org/10.1093/clinids/7.2.143

    Article  PubMed  Google Scholar 

  45. Williams P, Ciurana B, Camprubi S, Tomas JM (1990) Influence of lipopolysaccharide chemotype on the interaction between Klebsiella pneumoniae and human polymorphonuclear leucocytes. FEMS Microbiol Lett 57(3):305–309. https://doi.org/10.1016/0378-1097(90)90085-5

    Article  CAS  PubMed  Google Scholar 

  46. Bengoechea JA, Sa Pessoa J (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 43(2):123–144. https://doi.org/10.1093/femsre/fuy043

    Article  CAS  PubMed  Google Scholar 

  47. Costa AM, Leite M, Seruca R, Figueiredo C (2013) Adherens junctions as targets of microorganisms: a focus on Helicobacter pylori. FEBS Lett 587(3):259–265. https://doi.org/10.1016/j.febslet.2012.12.008 Epub 2012 Dec 19

    Article  CAS  PubMed  Google Scholar 

  48. Vikström E, Bui L, Konradsson P, Magnusson KE (2009) The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Exp Cell Res 315(2):313–326. https://doi.org/10.1016/j.yexcr.2008.10.044 Epub 2008 Nov 12

    Article  CAS  PubMed  Google Scholar 

  49. Lubkin A, Torres VJ (2017) Bacteria and endothelial cells: a toxic relationship. Curr Opin Microbiol 35:58–63. https://doi.org/10.1016/j.mib.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  50. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50. https://doi.org/10.1038/cr.2009.139 Epub 2009 Dec 15

    Article  CAS  PubMed  Google Scholar 

  51. Gallego JA, Blanco EA, Morell C, Lencz T, Malhotra AK (2020) Complement component C4 levels in the cerebrospinal fluid and plasma of patients with schizophrenia. Neuropsychopharmacology 22. https://doi.org/10.1038/s41386-020-00867-6 Epub ahead of print

  52. Rey R, Suaud-Chagny MF, Bohec AL, Dorey JM, d'Amato T, Tamouza R, Leboyer M (2020) Overexpression of complement component C4 in the dorsolateral prefrontal cortex, parietal cortex, superior temporal gyrus and associative striatum of patients with schizophrenia. Brain Behav Immun 90:216–225. https://doi.org/10.1016/j.bbi.2020.08.019 Epub 2020 Aug 19

    Article  CAS  PubMed  Google Scholar 

  53. Purves-Tyson TD, Robinson K, Brown AM, Boerrigter D, Cai HQ, Weissleder C, Owens SJ, Rothmond DA et al (2020) Increased macrophages and C1qA, C3, C4 transcripts in the midbrain of people with schizophrenia. Front Immunol 11:2002. https://doi.org/10.3389/fimmu.2020.02002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albertí S, Marqués G, Camprubí S, Merino S, Tomás JM, Vivanco F, Benedí VJ (1993) C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun 61(3):852-860. doi: 10.1128/IAI.61.3.852-860.1993. PMID: 8432605; PMCID: PMC302811.

  55. Heesterbeek DAC, Angelier ML, Harrison RA, Rooijakkers SHM (2018) Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun 10(5-6):455–464. https://doi.org/10.1159/000491439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 15;80(3):629-661. https://doi.org/10.1128/MMBR.00078-15.

  57. Morgan BP (2018) Complement in the pathogenesis of Alzheimer’s disease. Semin Immunopathol 40(1):113–124. https://doi.org/10.1007/s00281-017-0662-9

    Article  CAS  PubMed  Google Scholar 

  58. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 11;468(7321):223-231. https://doi.org/10.1038/nature09612.

  59. Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73. https://doi.org/10.1001/archpsyc.57.1.65

    Article  CAS  PubMed  Google Scholar 

  60. Cho K (2019) Emerging roles of complement protein C1q in neurodegeneration. Aging Dis 10(3):652–663. https://doi.org/10.14336/AD.2019.0118

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716. https://doi.org/10.1126/science.aad8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Espinoza LR, Osterland CK (1983) “Circulating immune complexes. Their clinical significance.” Futt, Publishing Co., NY, pp 1-319.

  63. Abrass CK, Border WA, Glassock RJ (1980) Circulating immune complexes in rats with autologous immune complex nephritis. Lab Investig 43(1):18–27

    CAS  PubMed  Google Scholar 

  64. Vizjak A, Ferluga D, Rozic M, Hvala A, Lindic J, Levart TK, Jurcić V, Jennette JC (2008) Pathology, clinical presentations, and outcomes of C1q nephropathy. J Am Soc Nephrol 19(11):2237–2244. https://doi.org/10.1681/ASN.2007080929

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ (2019) The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol 10:504. https://doi.org/10.3389/fimmu.2019.00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee HJ, Choi SY, Jeong KH, Sung JY, Moon SK, Moon JY, Lee SH, Lee TW et al (2013) Association of C1q deposition with renal outcomes in IgA nephropathy. Clin Nephrol 80(2):98–104. https://doi.org/10.5414/CN107854

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto AK, Maes M, Supasitthumrong T, Maes A, Michelin AP, de Oliveira SL, de Lima Pedrão JV, Moreira EG et al (2020) Deficit schizophrenia and its features are associated with PON1 Q192R genotypes and lowered paraoxonase 1 (PON1) enzymatic activity: effects on bacterial translocation. CNS Spectr 23:1–10. https://doi.org/10.1017/S1092852920001388 Epub ahead of print

    Article  Google Scholar 

  68. Lucas K, Maes M (2013) Role of the toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 48(1):190–204. https://doi.org/10.1007/s12035-013-8425-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maes M, Nani JV, Noto C, Rizzo L, Hayashi MAF, Brietzke E (2021) Impairments in peripheral blood T effector and T regulatory lymphocytes in bipolar disorder are associated with staging of illness and anti-cytomegalovirus IgG levels. Mol Neurobiol 58(1):229–242. https://doi.org/10.1007/s12035-020-02110-1 Epub 2020 Sep 11

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has been supported by the Asahi Glass Foundation, Chulalongkorn University Centenary Academic Development Project.

Author information

Authors and Affiliations

Authors

Contributions

All the contributing authors have participated in the manuscript. MM and BK designed the study. BK recruited patients and completed diagnostic interviews and rating scale measurements. MM carried out the statistical analyses. SS and DC performed the biomarker assays. All authors contributed to interpretation of the data and writing of the manuscript.

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Ethics Approval and Consent to Participate

The study was conducted according to Thai and international ethics and privacy laws. Approval for the study was obtained from the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (No. 298/57). All participants and their guardians (parents or other close family members) gave written informed consent prior to participation in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Vojdani, A., Sirivichayakul, S. et al. Inflammatory and Oxidative Pathways Are New Drug Targets in Multiple Episode Schizophrenia and Leaky Gut, Klebsiella pneumoniae, and C1q Immune Complexes Are Additional Drug Targets in First Episode Schizophrenia. Mol Neurobiol 58, 3319–3334 (2021). https://doi.org/10.1007/s12035-021-02343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02343-8

Keywords

Navigation