Skip to main content

Advertisement

Log in

Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The FOXP3 gene encodes a transcription factor thought to be important for the development and function of regulatory T cells (Treg cells). These cells are involved in the regulation of T cell activation and therefore are essential for normal immune homeostasis. Signals from microenvironment have a profound influence on the maintenance or progression of diseases. Thus, Tregs have an important marker protein, FOXP3, though it does not necessarily confer a Treg phenotype when expressed. FOXP3 polymorphisms that occur with high frequency in the general populations have been studied in common multifactorial human diseases. Dysfunction of FOXP3 gene product could result in lack of Treg cells and subsequently chronically activated CD4+ T cells which express increased levels of several activation markers and cytokines, resulting in some autoimmune diseases. In contrast, high Treg levels have been reported in peripheral blood, lymph nodes, and tumour specimens from patients with different types of cancer. The present study discusses the polymorphisms located in intron, exon and promoter regions of FOXP3 which have already been investigated by many researchers. FOXP3 has received considerable attention in attempts to understand the molecular aspect of Treg cells. Therefore, in the present study, the relationship between genetic polymorphism of FOXP3 in Treg-cell role and in disease development are reviewed considering the interactive effect of genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre G. M., Barbosa C. P., Teles J. S., Vilarino F. L., Christofolini D. M. and Bianco B. 2011 Analysis of FOXP3 polymorphisms in infertile women with and without endometriosis. Fertil. Steril. 95, 2223–7.

    Article  PubMed  CAS  Google Scholar 

  • Anover S., Linane A., Vijay S., Gambineri E., Goulet O., Moes N. et al. 2006 Sa.97. A unique mutation in an upstream region of the FOXP3 gene causes IPEX by aberrant mRNA splicing and lack of FOXP3+ Treg. Clin. Immunol. 119, S139.

    Article  Google Scholar 

  • Bacchetta R., Passerini L., Gambineri E., Dai M., Allan S. E., Perroni L. et al. 2006 Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722.

    Article  PubMed  CAS  Google Scholar 

  • Bafunno V., Santacroce R., Chetta M., D’Andrea G., Pisanelli D., Sessa F. et al. 2010 Polymorphisms in genes involved in autoimmune disease and the risk of FVIII inhibitor development in Italian patients with haemophilia A. Haemophilia 16, 469–473.

    PubMed  CAS  Google Scholar 

  • Ban Y., Tozaki T., Tobe T., Jacobson E. M., Concepcion E. S. and Tomer Y. 2007 The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid autoimmunity: an association analysis in Caucasian and Japanese cohorts. J. Autoimmun. 28, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Bandukwala H. S., Wu Y., Feuerer M., Chen Y., Barboza B., Ghosh S. et al. 2011 Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34, 479–491.

    Article  PubMed  CAS  Google Scholar 

  • Baron U., Floess S., Wieczorek G., Baumann K., Grutzkau A., Dong J. et al. 2007 DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378–2389.

    Article  PubMed  CAS  Google Scholar 

  • Bassuny W. M., Ihara K., Sasaki Y., Kuromaru R., Kohno H., Matsuura N. and Hara T. 2003 A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics 55, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Bennett C. L., Christie J., Ramsdell F., Brunkow M. E., Ferguson P. J., Whitesell L. et al. 2001 The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21.

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E., Dastrange M. and Oukka M. 2005 Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 102, 5138–5143.

    Article  PubMed  CAS  Google Scholar 

  • Betts G. J., Clarke S. L., Richards H. E., Godkin A. J. and Gallimore A. M. 2006 Regulating the immune response to tumours. Adv. Drug Deliv. Rev. 58, 948–961.

    Article  PubMed  CAS  Google Scholar 

  • Bjornvold M., Amundsen S. S., Stene L. C., Joner G., Dahl-Jorgensen K., Njolstad P. R. et al. 2006 FOXP3 polymorphisms in type 1 diabetes and coeliac disease. J. Autoimmun. 27, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Bottema R. W., Kerkhof M., Reijmerink N. E., Koppelman G. H., Thijs C., Stelma F. F. et al. 2010 X- chromosome Forkhead box P3 polymorphisms associate with atopy in girls in three Dutch birth cohorts. Allergy 65, 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Brunkow M. E., Jeffery E. W., Hjerrild K. A., Paeper B., Clark L. B., Yasayko S. A. et al. 2001 Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Campbell D. J. and Ziegler S. F. 2007 FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat. Rev. Immunol. 7, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Chae W. J., Henegariu O., Lee S. K. and Bothwell A. L. 2006 The mutant leucine- zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl. Acad. Sci. USA 103, 9631–9636.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry A., Rudra D., Treuting P., Samstein R. M., Liang Y., Kas A. and Rudensky A. Y. 2009 CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991.

    Article  PubMed  CAS  Google Scholar 

  • Coffer P. J. and Burgering B. M. 2004 Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889–899.

    Article  PubMed  CAS  Google Scholar 

  • Du J., Huang C., Zhou B. and Ziegler S. F. 2008 Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J. Immunol. 180, 4785–4792.

    PubMed  CAS  Google Scholar 

  • Eastell T., Hinks A. and Thomson W. 2007 SNPs in the FOXP3 gene region show no association with juvenile idiopathic arthritis in a UK Caucasian population. Rheumatology 46, 1263–1265.

    Article  PubMed  CAS  Google Scholar 

  • Floess S., Freyer J., Siewert C., Baron U., Olek S., Polansky J. et al. 2007 Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38.

    Article  Google Scholar 

  • Fodor E., Garaczi E., Polyanka H., Koreck A., Kemeny L. and Szell M. 2011 The rs3761548 polymorphism of FOXP3 is a protective genetic factor against allergic rhinitis in the Hungarian female population. Hum. Immunol. 72, 926–929.

    Article  PubMed  CAS  Google Scholar 

  • Fontenot J. D., Rasmussen J. P., Williams L. M., Dooley J. L., Farr A. G. and Rudensky A. Y. 2005 Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Gambineri E., Torgerson T. R. and Ochs H. D. 2003 Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435.

    Article  PubMed  CAS  Google Scholar 

  • Gao L., Li K., Li F., Li H., Liu L., Wang L. et al. 2010 Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J. Dermatol. Sci. 57, 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Hancock W. W. and Ozkaynak E. 2009 Three distinct domains contribute to nuclear transport of murine Foxp3. PLoS One 4, e7890.

    Article  Google Scholar 

  • Hanel S. A., Velavan T. P., Kremsner P. G. and Kun J. F. 2011 Novel and functional regulatory SNPs in the promoter region of FOXP3 gene in a Gabonese population. Immunogenetics 63, 409–415.

    Article  PubMed  Google Scholar 

  • Hoogendoorn B., Coleman S. L., Guy C. A., Smith K., Bowen T., Buckland P. R. and O’Donovan M. C. 2003 Functional analysis of human promoter polymorphisms. Hum. Mol. Genet. 12, 2249–2254.

    Article  PubMed  CAS  Google Scholar 

  • Howson J. M., Walker N. M., Smyth D. J. and Todd J. A. 2009 Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun. 10 suppl 1, 74–84.

    Article  Google Scholar 

  • Huehn J., Polansky J. K. and Hamann A. 2009 Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Inoue N., Watanabe M., Morita M., Tomizawa R., Akamizu T., Tatsumi K. et al. 2010 Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases. Clin. Exp. Immunol. 162, 402–406.

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H. and Schmitt E. 2003 The regulatory T cell family: distinct subsets and their interrelations. J. Immunol. 171, 6323–6327.

    PubMed  CAS  Google Scholar 

  • Kim H. P. and Leonard W. J. 2007 CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551.

    PubMed  CAS  Google Scholar 

  • Kim K. H., Kim T. M., Go H., Kim W. Y., Jeon Y. K., Lee S. H. et al. 2011 Clinical significance of tumor-infiltrating FOXP3+ T cells in patients with ocular adnexal mucosa-associated lymphoid tissue lymphoma. Cancer Sci. 102, 1972–1976.

    Article  PubMed  CAS  Google Scholar 

  • Kitoh A., Ono M., Naoe Y., Ohkura N., Yamaguchi T., Yaguchi H. et al. 2009 Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo- suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Leavy O. 2011 Immune regulation: macrophages join the FOXP3 suppressor gang. Nat. Rev. Immunol. 11, 438.

    Article  PubMed  CAS  Google Scholar 

  • Li B. and Greene M. I. 2007 FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell. Cycle 6, 1432–1436.

    PubMed  CAS  Google Scholar 

  • Li B., Samanta A., Song X., Furuuchi K., Iacono K. T., Kennedy S. et al. 2006 FOXP3 ensembles in T-cell regulation. Immunol. Rev. 212, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Li B., Samanta A., Song X., Iacono K. T., Bembas K., Tao R. et al. 2007a FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 104, 4571–4576.

    Article  PubMed  CAS  Google Scholar 

  • Li B., Samanta A., Song X., Iacono K. T., Brennan P., Chatila T. A. et al. 2007b FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int. Immunol. 19, 825–835.

    Article  PubMed  CAS  Google Scholar 

  • Li S., Weidenfeld J. and Morrisey E. E. 2004 Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell Biol. 24, 809–822.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y. C., Lee J. H., Wu A. S., Tsai C. Y., Yu H. H., Wang L. C. et al. 2011 Association of single-nucleotide polymorphisms in FOXP3 gene with systemic lupus erythematosus susceptibility: a case–control study. Lupus 20, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Liu F., Lang R., Zhao J., Zhang X., Pringle G. A., Fan Y. et al. 2011 CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res. Treat 130, 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Lopes J. E., Torgerson T. R., Schubert L. A., Anover S. D., Ocheltree E. L., Ochs H. D. and Ziegler S. F. 2006 Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142.

    PubMed  CAS  Google Scholar 

  • Lu H. 2009 FOXP3 expression and prognosis: role of both the tumor and T cells. J. Clin. Oncol. 27, 1735–1736.

    Article  PubMed  Google Scholar 

  • Mackey-Cushman S. L., Gao J., Holmes D. A., Nunoya J. I., Wang R., Unutmaz D. and Su L. 2011 FoxP3 interacts with linker histone H1.5 to modulate gene expression and program Treg cell activity. Genes Immun. 12, 559–567.

    Article  PubMed  CAS  Google Scholar 

  • Manrique S. Z., Correa M. A., Hoelzinger D. B., Dominguez A. L., Mirza N., Lin H. H. et al. 2011 Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J. Exp. Med. 208, 1485–1499.

    Article  PubMed  CAS  Google Scholar 

  • Mantel P. Y., Ouaked N., Ruckert B., Karagiannidis C., Welz R., Blaser K. and Schmidt-Weber C. B. 2006 Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593–3602.

    PubMed  CAS  Google Scholar 

  • Marson A., Kretschmer K., Frampton G. M., Jacobsen E. S., Polansky J. K., MacIsaac K. D. et al. 2007 Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935.

    Article  PubMed  CAS  Google Scholar 

  • Nagar M., Vernitsky H., Cohen Y., Dominissini D., Berkun Y., Rechavi G. et al. 2008 Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25-CD4+ T cells. Int. Immunol. 20, 1041–1055.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K. and Shima Y. 2007 No contribution of a GT microsatellite polymorphism in the promoter region of the FOXP3 gene to susceptibility to type 1 diabetes in the Japanese population. Clin. Chim. Acta 384, 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Ono M., Yaguchi H., Ohkura N., Kitabayashi I., Nagamura Y., Nomura T. et al. 2007 Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Owen C. J., Eden J. A., Jennings C. E., Wilson V., Cheetham T. D. and Pearce S. H. 2006 Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J. Mol. Endocrinol. 37, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Park O., Grishina I., Leung P. S., Gershwin M. E. and Prindiville T. 2005 Analysis of the Foxp3/scurfin gene in Crohn’s disease. Ann. N. Y. Acad. Sci. 1051, 218–228.

    Article  PubMed  CAS  Google Scholar 

  • Raskin L., Rennert G. and Gruber S. B. 2009 FOXP3 germline polymorphisms are not associated with risk of breast cancer. Cancer Genet. Cytogenet. 190, 40–42.

    Article  PubMed  CAS  Google Scholar 

  • Rudra D., Egawa T., Chong M. M., Treuting P., Littman D. R. and Rudensky A. Y. 2009 Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 10, 1170–1177.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S. 2005 Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S., Yamaguchi T., Nomura T. and Ono M. 2008 Regulatory T cells and immune tolerance. Cell 133, 775–787.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez E., Rueda B., Orozco G., Oliver J., Vilchez J. R., Paco L. et al. 2005 Analysis of a GT microsatellite in the promoter of the foxp3/scurfin gene in autoimmune diseases. Hum. Immunol. 66, 869–873.

    Article  PubMed  CAS  Google Scholar 

  • Shen Z., Chen L., Hao F., Wang G. and Liu Y. 2010 Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47/c-Myb binding. J. Cell. Mol. Med. 14, 226–241.

    Article  PubMed  CAS  Google Scholar 

  • Stroud J. C., Wu Y., Bates D. L., Han A., Nowick K., Paabo S., Tong H. and Chen L. 2006 Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Toker A. and Huehn J. 2011 To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms. Sci. Signal 4, e4.

    Article  Google Scholar 

  • Tone M. and Greene M. I. 2011 Cooperative regulatory events and Foxp3 expression. Nat. Immunol. 12, 14–16.

    Article  PubMed  CAS  Google Scholar 

  • Tone Y., Furuuchi K., Kojima Y., Tykocinski M. L., Greene M. I. and Tone M. 2008 Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202.

    Article  PubMed  CAS  Google Scholar 

  • Torgerson T. R. and Ochs H. D. 2007 Regulatory T cells in primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 7, 515–521.

    Article  PubMed  Google Scholar 

  • van der Vliet H. J. and Nieuwenhuis E. E. 2007 IPEX as a result of mutations in FOXP3. Clin. Dev. Immunol. 2007, 89017.

    PubMed  Google Scholar 

  • Vignali D. A., Collison L. W. and Workman C. J. 2008 How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Wang B., Lin D., Li C. and Tucker P. 2003 Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. 278, 24259–24268.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M. A., Oda J. M., Amarante M. K. and Cesar Voltarelli J. 2010 Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis. Rev. 29, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Wildin R. S., Smyk-Pearson S. and Filipovich A. H. 2002 Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Williams L. M. and Rudensky A. Y. 2007 Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y., Borde M., Heissmeyer V., Feuerer M., Lapan A. D., Stroud J. C. et al. 2006 FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Wu Z., You Z., Zhang C., Li Z., Su X., Zhang X. and Li Y. 2012 Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clin. Dev. Immunol. 2012, 896458.

    PubMed  Google Scholar 

  • Zavattari P., Deidda E., Pitzalis M., Zoa B., Moi L., Lampis R. et al. 2004 No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Diabetes 53, 1911–1914.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L., Zhang Y., Desrosiers M., Wang C., Zhao Y. and Han D. 2009 Genetic association study of FOXP3 polymorphisms in allergic rhinitis in a Chinese population. Hum. Immunol. 70, 930–934.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y., Josefowicz S. Z., Kas A., Chu T. T., Gavin M. A. and Rudensky A. Y. 2007 Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y., Chaudhry A., Kas A., deRoos P., Kim J. M., Chu T. T. et al. 2009 Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458, 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Zhou L., Lopes J. E., Chong M. M., Ivanov, I. I., Min R., Victora G. D. et al. 2008 TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES), PROCAD, PNPD, Fundação Araucária do Paraná (FAP), Brasil and Pró-Reitoria de Pós-Graduação - State University of Londrina - PROPPG-UEL. The entire article was revised by a British-born scientific text editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MARIA ANGELICA EHARA WATANABE.

Additional information

Oda J. M. M., Hirata B. K. B., Guembarovski R. L. and Watanabe M. A. E. 2013 Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J. Genet. 92, xx–xx

Rights and permissions

Reprints and permissions

About this article

Cite this article

ODA, J.M.M., HIRATA, B.K.B., GUEMBAROVSKI, R.L. et al. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet 92, 163–171 (2013). https://doi.org/10.1007/s12041-013-0213-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0213-7

Keywords

Navigation