Skip to main content

Advertisement

Log in

Copper filtration in pediatric digital X-ray imaging: its impact on image quality and dose

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25–32%, 32–39%, and 40–44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior–anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ICRP. Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1977; 1(3).

  2. ICRP. Summary of the current ICRP principles for protection of the patient in diagnostic radiology. Oxford: Pergamon Press; 1993.

  3. Koedooder K, Venema HW. Filter materials for dose reduction in screen-film radiography. Phys Med Biol. 1986;31(6):585–600.

    Article  PubMed  CAS  Google Scholar 

  4. Shrimpton PC, Jones DG, Wall BF. The influence of tube filtration and potential on patient dose during x-ray examinations. Phys Med Biol. 1988;33(10):1205–12.

    Article  PubMed  CAS  Google Scholar 

  5. Nicholson RA, Thornton A, Akpan M. Radiation dose reduction in paediatric fluoroscopy using added filtration. Br J Radiol. 1995;68(807):296–300.

    Article  PubMed  CAS  Google Scholar 

  6. Wandl-Vergesslich KA. Guidelines on Best Practice in the X-Ray Imaging of Children, By J.V. Cook, K. Shah, S. Pablot, K. Kyriou, A. Pettet, M. Fitzgerald, Queen Mary’s Hospital for Children. Eur J Radiol. 2000; 33(1):67.

  7. Monnin P, Holzer Z, Wolf R, Neitzel U, Vock P, Gudinchet F, Verdun FR. An image quality comparison of standard and dual-side read CR systems for pediatric radiology. Med Phys. 2006;33(2):411–20.

    Article  PubMed  CAS  Google Scholar 

  8. Tapiovaara M, Lakkisto M, Servomaa A. A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations. Helsinki: Finnish Centre for Radiation and Nuclear Safety (STUK); 1997.

  9. Tapiovaara M, Siiskonen T. PCXMC—A Monte Carlo program for calculating patient doses in medical x-ray examinations. Helsinki: Finnish Centre for Radiation and Nuclear Safety (STUK); 2008.

  10. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP; 2007:1–332.

  11. Manual CDRAD Analyser. The Netherlands: Artinis Medical Systems B.V.; 2004.

  12. Pascoal A, Lawinski CP, Honey I, Blake P. Evaluation of a software package for automated quality assessment of contrast detail images—comparison with subjective visual assessment. Phys Med Biol. 2005;50(23):5743–57.

    Article  PubMed  CAS  Google Scholar 

  13. European guidelines on quality criteria for diagnostic radiographic images in paediatrics. Luxemburg: European Commission; 1996.

  14. Leitlinie der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik—Qualitätskriterien röntgendiagnostischer Untersuchungen. Bundesärztekammer, Arbeitsgemeinschaft der deutschen Ärztekammern; 2007.

  15. Richard HB. The impact of increased Al filtration on x-ray tube loading and image quality in diagnostic radiology. Med Phys. 2003;30(1):69–78.

    Article  Google Scholar 

  16. ICRP. Recommendations of the International Commission on Radiological Protection. Oxford: Pergamon Press; 1990.

  17. Korner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27(3):675–86.

    Article  PubMed  Google Scholar 

  18. Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72(2):202–8.

    Article  PubMed  Google Scholar 

  19. Kotter E, Langer M. Digital radiography with large-area flat-panel detectors. Eur Radiol. 2002;12(10):2562–70.

    PubMed  CAS  Google Scholar 

  20. Spahn M, Strotzer M, Volk M, Bohm S, Geiger B, Hahm G, Feuerbach S. Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system. Invest Radiol. 2000;35(4):260–6.

    Article  PubMed  CAS  Google Scholar 

  21. Aufrichtig R, Xue P. Dose efficiency and low-contrast detectability of an amorphous silicon x-ray detector for digital radiography. Phys Med Biol. 2000;45(9):2653–69.

    Article  PubMed  CAS  Google Scholar 

  22. Hosch WP, Fink C, Radeleff B, Kampschulte A, Kauffmann GW, Hansmann J. Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector. Clin Radiol. 2002;57(10):902–7.

    Article  PubMed  CAS  Google Scholar 

  23. Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H. Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol. 2003;181(4):923–9.

    PubMed  Google Scholar 

  24. Herrmann A, Bonel H, Stabler A, Kulinna C, Glaser C, Holzknecht N, Geiger B, Schatzl M, Reiser F. Chest imaging with flat-panel detector at low and standard doses: comparison with storage phosphor technology in normal patients. Eur Radiol. 2002;12(2):385–90.

    Article  PubMed  CAS  Google Scholar 

  25. Hamer OW, Volk M, Zorger Z, Feuerbach S, Strotzer M. Amorphous silicon flat-panel, x-ray detector versus storage phosphor-based computed radiography: contrast-detail phantom study at different tube voltages and detector entrance doses. Invest Radiol. 2003;38(4):212–20.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank U. Neitzel (Philips Medical Systems DMC GmbH, Hamburg, Germany) for his assistance with the physics and review of the manuscript, D. Böhler (X-ray technician) for her technical assistance in producing the images, and R. van der Burght (Artinis Medical Systems, Netherlands) for his assistance with the CDRAD analyzer software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Wolf.

About this article

Cite this article

Brosi, P., Stuessi, A., Verdun, F.R. et al. Copper filtration in pediatric digital X-ray imaging: its impact on image quality and dose. Radiol Phys Technol 4, 148–155 (2011). https://doi.org/10.1007/s12194-011-0115-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-011-0115-4

Keywords

Navigation