Skip to main content
Log in

Diffusion analysis with triexponential function in hepatic steatosis

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our purpose was to assess the influence of liver steatosis on diffusion by triexponential analysis. Thirty-three patients underwent diffusion-weighted magnetic resonance imaging with multiple b values for perfusion-related diffusion, fast free diffusion, and slow restricted diffusion coefficients (D p, D f, D s) and fractions (F p, F f, F s). They also underwent dual-echo gradient-echo imaging for measurement of the hepatic fat fraction (HFF). Of these, 13 patients were included in the control group and 20 in the fatty liver group with HFF >5 %. The parameters of the two groups were compared by use of the Mann–Whitney U test. The relationships between diffusion coefficients and HFFs were assessed by use of the Pearson correlation. D p and D f were reduced significantly in the steatotic liver group compared with those in the control group (D p = 27.72 ± 6.61 × 10−3 vs. 33.33 ± 6.47 × 10−3 mm2/s, P = 0.0072; D f = 1.70 ± 0.53 × 10−3 vs. 2.06 ± 0.40 × 10−3 mm2/s, P = 0.0224). There were no significant differences in the other parameters between the two groups. Furthermore, D p and D f were correlated with HFF (P < 0.0001, r = −0.64 and P = 0.0008, r = −0.56, respectively). Decreased liver perfusion in steatosis caused the reduction in D p, and extracellular fat accumulation and intracellular fat droplets in steatosis led to the reduction in D f. Thus, the influence of hepatic steatosis should be taken into consideration when triexponential function analysis is used for assessment of diffuse liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koinuma M, Ohashi I, Hanafusa K, Shibuya H. Apparent diffusion coefficient measurements with diffusion-weighted magnetic resonance imaging for evaluation of hepatic fibrosis. J Magn Reson Imaging. 2005;22:80–5.

    Article  PubMed  Google Scholar 

  2. Taouli B, Tolia AJ, Losada M, Babb JS, Chan ES, Bannan MA, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol. 2007;189:799–806.

    Article  PubMed  Google Scholar 

  3. Lewin M, Poujol-Robert A, Boëlle PY, Wendum D, Lasnier E, Viallon M, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology. 2007;46:658–65.

    Article  CAS  PubMed  Google Scholar 

  4. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Xia D, Jing J, Shen H, Wu J. Value of diffusion-weighted magnetic resonance images for discrimination of focal benign and malignant hepatic lesions: a meta-analysis. J Magn Reson Imaging. 2010;32:130–7.

    Article  PubMed  Google Scholar 

  6. Miller FH, Hammond N, Siddiqi AJ, Shroff S, Khatri G, Wang Y, et al. Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging. 2010;32:138–47.

    Article  PubMed  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    PubMed  Google Scholar 

  8. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology. 1999;210:617–23.

    Article  CAS  PubMed  Google Scholar 

  9. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology. 2008;249:891–9.

    Article  PubMed  Google Scholar 

  10. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging. 2010;31:589–600.

    Article  PubMed  Google Scholar 

  11. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med. 2010;64:1580–5.

    Article  PubMed  Google Scholar 

  12. Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters—initial experience. Eur J Radiol. 2012;81:e310–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol. 2011;46:285–91.

    Article  PubMed  Google Scholar 

  14. Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol. 2012;199:W496–500.

    Article  PubMed  Google Scholar 

  15. Lee JT, Liau J, Murphy P, Schroeder ME, Sirlin CB, Bydder M. Cross-sectional investigation of correlation between hepatic steatosis and IVIM perfusion on MR imaging. Magn Reson Imaging. 2012;30:572–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Poyraz AK, Onur MR, Kocakoç E, Oğur E. Diffusion-weighted MRI of fatty liver. J Magn Reson Imaging. 2012;35:1108–11.

    Article  PubMed  Google Scholar 

  17. Guiu B, Petit JM, Capitan V, Aho S, Masson D, Lefevre PH, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology. 2012;265:96–103.

    Article  PubMed  Google Scholar 

  18. Hayashi T, Miyati T, Takahashi J, Fukuzawa K, Sakai H, Tano M, et al. Diffusion analysis with triexponential function in liver cirrhosis. J Magn Reson Imaging. 2013;38:148–53.

    Article  PubMed  Google Scholar 

  19. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–23.

    Article  PubMed  Google Scholar 

  20. Caldwell SH, Crespo DM. The spectrum expanded: cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. J Hepatol. 2004;40:578–84.

    Article  PubMed  Google Scholar 

  21. Lv W, Yan F, Zeng M, Zhang J, Yuan Y, Ma J. Value of abdominal susceptibility-weighted magnetic resonance imaging for quantitative assessment of hepatic iron deposition in patients with chronic hepatitis B: comparison with serum iron markers. J Int Med Res. 2012;40:1005–15.

    Article  CAS  PubMed  Google Scholar 

  22. Taouli B, Sandberg A, Stemmer A, Parikh T, Wong S, Xu J, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging. 2009;30:561–8.

    Article  PubMed  Google Scholar 

  23. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.

    Article  PubMed  Google Scholar 

  24. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  25. Qayyum A, Goh JS, Kakar S, Yeh BM, Merriman RB, Coakley FV. Accuracy of liver fat quantification at MR imaging: comparison of out-of-phase gradient-echo and fat-saturated fast spin-echo techniques—initial experience. Radiology. 2005;237:507–11.

    Article  PubMed  Google Scholar 

  26. Koelblinger C, Krššák M, Maresch J, Wrba F, Kaczirek K, Gruenberger T, et al. Hepatic steatosis assessment with 1H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: reliable enough for making clinical decisions? Eur J Radiol. 2012;81:2990–5.

    Article  PubMed  Google Scholar 

  27. Seifalian AM, Piasecki C, Agarwal A, Davidson BR. The effect of graded steatosis on flow in the hepatic parenchymal microcirculation. Transplantation. 1999;68:780–4.

    Article  CAS  PubMed  Google Scholar 

  28. Balci A, Karazincir S, Sumbas H, Oter Y, Egilmez E, Inandi T. Effects of diffuse fatty infiltration of the liver on portal vein flow hemodynamics. J Clin Ultrasound. 2008;36:134–40.

    Article  PubMed  Google Scholar 

  29. Ulusan S, Yakar T, Koc Z. Evaluation of portal venous velocity with Doppler ultrasound in patients with nonalcoholic fatty liver disease. Korean J Radiol. 2011;12:450–5.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.

    Article  CAS  PubMed  Google Scholar 

  31. Teramoto K, Bowers JL, Kruskal JB, Clouse ME. Hepatic microcirculatory changes after reperfusion in fatty and normal liver transplantation in the rat. Transplantation. 1993;56:1076–82.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma P, Martin DR, Pineda N, Xu Q, Vos M, Anania F, et al. Quantitative analysis of T2-correction in single-voxel magnetic resonance spectroscopy of hepatic lipid fraction. J Magn Reson Imaging. 2009;29:629–35.

    Article  PubMed  Google Scholar 

  33. Hayashi N, Miyati T, Minami T, Takeshita T, Ryu Y, Matsuda T, et al. Quantitative analysis of hepatic fat fraction by single-breathholding MR spectroscopy with T2 correction: phantom and clinical study with histologic assessment. Radiol Phys Technol. 2013;6:219–25.

    Article  PubMed  Google Scholar 

  34. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging. 2011;29:766–76.

    Article  PubMed  Google Scholar 

  35. Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, et al. Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging. 2012;36:159–67.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Hayashi.

About this article

Cite this article

Hayashi, T., Miyati, T., Takahashi, J. et al. Diffusion analysis with triexponential function in hepatic steatosis. Radiol Phys Technol 7, 89–94 (2014). https://doi.org/10.1007/s12194-013-0235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-013-0235-0

Keywords

Navigation