Skip to main content
Log in

Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B.a. :

Bacillus anthracis

F.t. :

Francisella tularensis

Y.p. :

Yersinia pestis

BWA:

biological warfare agent

CDC:

Centers for Disease Control and Prevention

LAPS:

light addressable potentiometric sensor

NBC:

nuclear, biological and chemical (weapon)

PCR:

polymerase chain reaction

RAPID:

ruggedized advanced pathogen identification device

SPR:

surface plasmon resonance

References

  • Ash C., Farrow J.A.E., Dorsch M., Stackebrandt E., Collins M.D.: Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Internat.J.Syst.Bacteriol.41, 343–346 (1991).

    CAS  Google Scholar 

  • Banďouchová H., Sedláčková J., Hubálek M., Pohanka M., Pecková L., Treml F., Vitula F., Pikula J.: Susceptibility of selected murine and microtine species to infection by a wild strain of Francisella tularensis subsp. holoarctica. Vet.Med.54, 64–74 (2009).

    Google Scholar 

  • Bevanger L., Maeland J.A., Naess A.I.: Competitive enzyme immunoassay for antibodies to a 43,000-molecular-weight Francisella tularensis outer membrane protein for the diagnosis of tularemia. J.Clin.Microbiol.27, 922–926 (1989).

    CAS  PubMed  Google Scholar 

  • Beyer W., Pocivalsek S., Bohm R.: Polymerase chain reaction-ELISA to detect Bacillus anthracis from soil samples — limitations of present published primers. J.Appl.Microbiol.87, 229–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovich T., Carniel E., Fukushima H., Skurnik M.: Use of O-antigen gene cluster-specific PCRs for the identification and O genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J.Clin.Microbiol.41, 5103–5112 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bianucci R., Rahalison L., Massa E.R., Peluso A., Ferroglio E., Signoli M.: Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (southeastern France, 16th–18th centuries). Am.J.Phys. Anthropol., in press (2008).

  • Broekhuijsen M., Larsson P., Johansson A., Byström M., Eriksson U., Larsson E., Prior R.G., Sjöstedt A., Titball R.W.: Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J.Clin.Microbiol.41, 2924–2931 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Byvalov A.A., Gavrilov K.E., Krupin V.V., Chebotarev E.V., Zheludkova E.V., Drubkov V.I., Smirnov A.E., Malkov V.N., Dupiasheva T.I., Pechenkin D.V., Bondarev V.P.: Biological and physicochemical properties of Yersinia pseudotuberculosis cultures carrying the Yersinia pestis fra operon. Mol.Gen.Mikrobiol.Virusol.1, 14–18 (2008).

    PubMed  Google Scholar 

  • Canter D.A., Gunning D., Rodgers P., O’Connor L., Traunero C., Kempter C.J.: Remediation of Bacillus anthracis contamination in the U.S. Department of Justice mail facility. Biosecur.Bioterror.3, 119–127 (2005).

    Article  PubMed  Google Scholar 

  • Cao K.L., Anderson G.P., Ligler F.S., Ezzel J.: Detection of Yersinia pestis fraction 1 antigen with a fieber optic biosensor. J.Clin. Microbiol.33, 336–341 (1995).

    CAS  PubMed  Google Scholar 

  • Carlsson H.E., Lindberg A.A., Lindberg G., Hederstedt B., Karlsson K.A., Agell B.O.: Enzyme-linked immunosorbent assay for immunological diagnosis of human tularemia. J.Clin.Microbiol.10, 615–621 (1979).

    CAS  PubMed  Google Scholar 

  • Celebi G., Baruonu F., Ayoglu F., Cinar F., Karadenizli A., Ugur M.B., Gedikoglu S.: Tularemia, a reemerging disease in northwest Turkey: epidemiological investigation and evaluation of treatment responses. Japan J.Infect.Dis.59, 229–234 (2006).

    Google Scholar 

  • Chanteau S., Rabarijaona L., O’Brien T., Rahalison L., Hager J., Boisier P., Burans J., Rasolomaharo M.: F1 antigenaemia in bubonic plague patients, a marker of gravity and efficacy of therapy. Trans.Roy.Soc.Trop.Med.Hyg.92, 572–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Christopher G.W., Cieslak T.J., Pavlin J.A., Eitzen E.M.: Biological warfare: a historical perspective. J.Am.Med.Assoc.278, 412–417 (1997).

    Article  CAS  Google Scholar 

  • Craven R.B., Maupin G.O., Beard M.L., Quan T.J., Barnes A.M.: Reported cases of human plague infections in the United States, 1970–1991. J.Med.Entomol.30, 758–761 (1993).

    CAS  PubMed  Google Scholar 

  • Crook L.D., Tempest B.: Plague: a clinical review of 27 cases. Arch.Intern.Med.152, 1253–1256 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Dennis D.T., Iglesby T.V., Henderson D.A., Bartlett J.G., Ascher M.S., Eitzen E., Fine A.D., Friedlander A.M., Hauer J., Layton M., Lillibridge S.R., Mcdade J.E., Osterholm M.T., O’Toole T., Parker G., Perl T.M., Russell P.K., Tonat K.: Tularemia as a biological weapon — medical and public health management. J.Am.Med.Assoc.285, 2763–2773 (2001).

    Article  CAS  Google Scholar 

  • Derbes V.J.: De mussis and the great plaque of 1348: a forgotten episode in bacteriological war. J.Am.Med.Assoc.196, 59–62 (1966).

    Article  CAS  Google Scholar 

  • Devdariani Z.L., Verenkov M.S., Feodorova V.A., Solodovnicov N.S., Belov L.G.: Identification of Yersinia pestis with varied plasmid composition using monoclonal and polyclonal fluorescent immunoglobulins. FEMS Immunol.Med.Microbiol.6, 31–35 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Doll J.M., Zeitz P.S., Ettestad P., Bucholtz A.L., Davis T., Gage K.: Cat-transmitted fatal pneumonic plague in a person who traveled from Colorado to Arizona. Am.J.Trop.Med.Hyg.51, 109–114 (1994).

    CAS  PubMed  Google Scholar 

  • Dorofe’ev K.A.: Classification of the causative agent of tularemia. Symp.Res.Works Inst.Epidemiol.Microbiol.Chita1, 170–180 (1947).

    Google Scholar 

  • Elsholz B., Nitsche A., Achenbach J., Ellerbrok H., Blohm L., Albers J., Pauli G., Hintsche R., Worl R.: Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens.Bioelectron.24, 1737–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Emanuel P.A., Dang J., Gebhardt J.S., Aldrich J., Garber E.A.E., Henrieta K., Stopa P., Valdes J.J., Schultz A.D.: Recombinant antibodies: a new reagent for biological agent detection. Biosens.Bioelectron.14, 761–770 (2000).

    Article  Google Scholar 

  • Fedorova V.A., Petrova A.V., Devdariani Z.L.: Influence of cultivation conditions on the expression of Yersinia pestis YopE. Zh.Mikrobiol.Epidemiol.Imunobiol.4, 3–7 (2005).

    Google Scholar 

  • Fonseca A.P., Correia P., Extremina C.I., Sousa J.C., Tenreiro R., Barros H.: Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Portuguese central hospital. Folia Microbiol.53, 540–546 (2008).

    Article  CAS  Google Scholar 

  • Forsman M., Sandström G., Jaurin B.: Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis. Appl.Environ.Microbiol.56, 949–955 (1990).

    CAS  PubMed  Google Scholar 

  • Gaultney J.B., Wende R.D., Williams R.P.: Microagglutination procedures for febrile agglutination tests. Appl.Microbiol.22, 635–640 (1971).

    CAS  PubMed  Google Scholar 

  • Grunow R., Splettstoesser W., Mcdonald S., Otterbein C., O’Brien T., Morgan C., Aldrich J., Hofer E., Finke E.J., Meyer H.: Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin.Diagn.Lab.Immunol.7, 86–90 (2000).

    CAS  PubMed  Google Scholar 

  • Gurycová D.: First isolation of Francisella tularensis subsp. tularensis in Europe. Eur.J.Epidemiol.46, 797–802 (1998).

    Article  Google Scholar 

  • Higgins J.A., Cooper M., Schroeder-Trucker L., Black S., Miller D., Karns J.S., Manthey E., Breeze R., Perdue M.L.: A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Appl.Environ.Microbiol.69, 593–599 (2002).

    Article  CAS  Google Scholar 

  • Hollis D.G., Weaver R.E., Steigerwalt A.G., Wenger J.D., Moss C.W., Brenner D.J.: Francisella philomiragia comb.nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J.Clin.Microbiol.27, 1601–1608 (1989).

    CAS  PubMed  Google Scholar 

  • Hopla C.E.: The ecology of tularemia. Adv.Vet.Sci.Comp.Med.18, 25–53 (1974).

    CAS  PubMed  Google Scholar 

  • Hubálek Z., Sixl W., Halouzka J.: Francisella tularensis in Dermacentor reticulatus ticks from the Czech Republic and Austria. Wien.Klin.Wochenschr.110, 909–910 (1998).

    PubMed  Google Scholar 

  • Josefson D.: US fear of bioterrorism spreads as anthrax cases increase. Brit.Med.J.323, 877–878 (2001).

    Article  Google Scholar 

  • Keim P., Kalif A., Schupp J., Hill K., Travis S.E., Richmond K., Adair D.M., Hugh-Jones M., Kuske C.R., Jackson P.: Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J.Bacteriol.1979, 818–824 (1997).

    Google Scholar 

  • Keim P., Smith K.L., Keys C., Takahashi H., Kurata T., Kaufmann A.: Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J.Clin.Microbiol.39, 4566–4567 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kiel J.L., Parker J.E., Holwitt E.A., Mccreary R.P., Andrews C.J., De Los Santos A., Wade M., Kalns J., Walker W.: Geographical distribution of genotypic and phenotypic markers among Bacillus anthracis isolates and related species by historical movement and horizontal transfer. Folia Microbiol.53, 472–478 (2008).

    Article  CAS  Google Scholar 

  • Kilonzo B.S., Mbise T.J., Mwalimu D.C., Kindamba L.: Observations on the endemicity of plague in Karatu and Ngorongoro, northern Tanzania. Tanzan.Health Res.Bull.8, 1–6 (2006).

    CAS  PubMed  Google Scholar 

  • Kortepeter M.G., Cieslak T.J., Eitzen E.M.: Bioterrorism. J.Environ.Health63, 21–24 (2001).

    CAS  PubMed  Google Scholar 

  • Laforce F.M.: Anthrax. Clin.Infect.Dis.19, 1009–1014 (1994).

    CAS  PubMed  Google Scholar 

  • Leonard C., Zekri O., Mahillon J.: Integrated physical and genetic mapping of Bacillus cereus and other Gram-positive bacteria based on the IS231A transposition vectors. Infect.Immun.66, 2163–2169 (1998).

    CAS  PubMed  Google Scholar 

  • Matero P., Pasanen T., Laukkanen R., Tissari P., Tarkka E., Vaara M., Skurnik M.: Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS117, 34–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Mayor A.: Dirty tricks in ancient warfare. Mil.Hist.Quart.10, 1–37 (1997).

    Google Scholar 

  • Mccoy G.W., Chapin C.W.: Further observations on a plaque-like disease of rodents with a preliminary note on the causative agent, Bacterium tularense. J.Infect.Dis.10, 61–72 (1912).

    Google Scholar 

  • Mcdonough K.A., Schwam T.G., Thomas R.E., Falkow S.: Identification of a Yersinia pestis-specific DNA probe with potential for use in plague surveillance. J.Clin.Microbiol.26, 2525–2519 (1988).

    Google Scholar 

  • Meyer M.H., Stehr M., Bhuju S., Krause H.J., Hartmann M., Miethe P., Singh M., Keusgen M.: Magnetic biosensor for the detection of Yersinia pestis. J.Microbiol.Meth.68, 218–224 (2007).

    Article  CAS  Google Scholar 

  • Norkina O.V., Kulichenko A.N., Gintsburg A.L., Tuchkov I.V., Popov Y.A., Aksenov M.U., Drosdov I.G.: Development of a diagnostic test for Yersinia pestis by the polymerase chain reaction. J.Appl.Bacteriol.76, 240–245 (1994).

    CAS  PubMed  Google Scholar 

  • Olson K.B.: Aum Shinrikyo: once and future threat? Emerg.Infect.Dis.5, 513–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Olsufjev N.G., Emelyanova O.S., Dunaeva T.N.: Comparative study of strains of B. tularense in the Old and New World and their taxonomy. J.Hyg.Epidemiol.Microbiol.Immunol.3, 138–149 (1959).

    Google Scholar 

  • Olsufjev N.G., Meshcheryakova I.S.: Subspecific taxonomy of Francisella tularensis MCCOY and CHAPIN 1912. Internat.J.Syst. Bacteriol.33, 872–874 (1983).

    Google Scholar 

  • Özcürümez M.P., Kischel N., Priebe H., Splettstöster W., Finke E.J., Grunow R.: Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin.Diagn.Lab.Immunol.11, 1008–1015 (2004).

    Google Scholar 

  • Perry R.D., Fetherston J.D.: Yersinia pestis-etiologic agent of plague. Clin.Microbiol.Rev.10, 35–66 (1997).

    CAS  PubMed  Google Scholar 

  • Pikula J., Beklová M., Holešovská Z., Treml F.: Ecology of European brown hare and distribution of natural foci of tularaemia in the Czech Republic. Acta Vet.Brno73, 267–273 (2004).

    Google Scholar 

  • Plourde P.J., Embree J., Friesen F., Lindsay G.: Glandular tularemia with typhoidal features in a Manitoba child. Can.Med.Assoc.J.146, 1953–1955 (1992).

    CAS  Google Scholar 

  • Pohanka M.: Evaluation of immunoglobulin production during tularaemia infection in BALB/c mouse model. Acta Vet.Brno76, 579–584 (2007).

    Article  CAS  Google Scholar 

  • Pohanka M., Skládal P.: Piezoelectric Immunosensor for Francisella tularensis detection using immunoglobulin M in a limiting dilution. Analyt.Lett.38, 411–422 (2005).

    CAS  Google Scholar 

  • Pohanka M., Skládal P.: Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanalysis19, 2507–2512 (2007a).

    Article  CAS  Google Scholar 

  • Pohanka M., Skládal P.: Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol.52, 325–330 (2007b).

    Article  CAS  Google Scholar 

  • Pohanka M., Pavliš O., Skládal P.: Diagnosis of tularemia using piezoelectric biosensor technology. Talanta71, 981–985 (2007a).

    Article  CAS  PubMed  Google Scholar 

  • Pohanka M., Pavliš O., Skládal P.: Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors7, 341–353 (2007b).

    Article  CAS  Google Scholar 

  • Pohanka M., Treml F., Hubálek M., Banďouchová H., Beklová M., Pikula J.: Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected european brown hares (Lepus europaeus). Sensors7, 2825–2834 (2007c).

    Article  Google Scholar 

  • Pohanka M., Skládal P., Kroča M.: Biosensors for biological warfare agent detection. Def.Sci.J.57, 185–193 (2007d).

    Google Scholar 

  • Prior R.G., Klasson L., Larsson P., Williams K., Lindler L., Sjostedt A., Svensson T., Tamas I., Wren B.W., Oyston P.C.F., Andersson S.G.E., Titball R.W.: Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J.Appl.Microbiol.91, 1–7 (2001).

    Article  Google Scholar 

  • Pullen R.L., Stuart B.M.: Tularemia: analysis of 225 cases. J.Am.Med.Assoc.129, 495–500 (1945).

    Google Scholar 

  • Qiomm R., Campbell A.M., Phillips A.P.: A monoclonal antibody specific for the A antigen of Brucella spp. J.Gen.Microbiol.139, 2285–2289 (1984).

    Google Scholar 

  • Rahalison L., Vololonirina E., Ratsitorahina M., Chanteau S.: Diagnosis of bubonic plague by PCR in Madagascar under field conditions. J.Clin.Microbiol.38, 260–263 (2000).

    CAS  PubMed  Google Scholar 

  • Ramisse V., Patra G., Garrique J.L, Guesdon J.L., Mock M.: Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol.Lett.145, 9–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Reyn C.F., Weber N.S., Tempest B., Barnes A.M., Poland J.D., Boyce J.M., Zalma V.: Epidemiologic and clinical features of an outbreak of bubonic plague in New Mexico. J.Infect.Dis.136, 489–494 (1977).

    Google Scholar 

  • Russell J.C.: That earlier plague. Demography5, 174–184 (1968).

    Article  Google Scholar 

  • Sandström G., Sjöstedt A., Forsman M., Pavlovich N.V., Mishankin B.N.: Characterization and classification of strains of Francisella tularensis isolated in the central asian focus of the Soviet Union and in Japan. J.Clin.Microbiol.30, 172–175 (1992).

    PubMed  Google Scholar 

  • Schmitt P., Splettstösser W., Özcürümez M.P., Finke E.J., Grunow R.: A novel screening ELISA and a confirmatory Western blot useful for diagnosis and epidemiological studies of tularemia. Epidemiol.Infect.133, 759–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sellek R., Jimenez O., Aizpurua C., Fernandez-Frutos B., De Leon B., Camanacho M., Fernandez-Moreira D., Ybarra C., Carlos Cabria J.: Recovery of Francisella tularensis from soil samples by filtration and detection by real-time PCR and cELISA. J.Environ.Monit.10, 362–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Seydlová G., Svobodová J.: Development of membrane lipids in the surfactin producer Bacillus subtilis. Folia Microbiol.53, 303–307 (2008).

    Article  CAS  Google Scholar 

  • Siret V., Barataud D., Prat M., Vaillant V., Ansart S., Lecoustumier A., Vaisssaire J., Raffi F., Garre M., Capek I.: An outbreak of airborne tularemia in France, August 2004. Eur.Surveill.11, 58–60 (2006).

    CAS  Google Scholar 

  • Smither S.J., Hill J., VAN Baar B.L., Hulst A.G., DE Jong A.L., Titball R.W.: Identification of outer membrane proteins of Yersinia pestis through biotinylation. J.Microbiol.Meth.68, 26–31 (2007).

    Article  CAS  Google Scholar 

  • Stewart A., Satterfield B., Cohen M., O’Neill K., Robison R.: A quadruplex real-time PCR assay for the detection of Yersinia pestis and its plasmids. J.Med.Microbiol.57, 324–331 (2008); mass spectrometry: J.Biol.Chem. 279, 38693–38700 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Swietnicki W., O’Brien S., Holman K., Cherry S., Brueggmann E., Tropea J.E., Hines H.B., Waugh D.S., Ulrich R.G.: Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance. J.Biol.Chem.279, 38693–38700 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Tanabe M., Atkins H.S., Harland D.N., Elvin S.J., Stagg A.J., Mirza O., Titball R.W., Byrne B., Brown K.A.: The ABC transporter protein OppA provides protection against experimental Yersinia pestis infection. Infect.Immun.74, 3687–3691 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Taylor L.H., Latham S.M., Woolhouse M.E.J.: Risk factors for human disease emergence. Phil.Trans.Roy.Soc.Lond. B 356, 983–989 (2001).

    Article  CAS  Google Scholar 

  • Tims T.B., Lim D.V.: Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J.Microbiol.Meth.59, 127–130 (2004).

    Article  CAS  Google Scholar 

  • Titball R.W., Turnbull P.C.B., Huston R.A.: The monitoring and detection of Bacillus anthracis in the environment. J.Appl.Bacteriol. Symp.70, 9–18 (1991).

    Google Scholar 

  • Tomaso H., Reisinger E.C., Al Dahouk S., Frangoulidis D., Rakin A., Landt O., Neubauer H.: Rapid detection of Yersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol.Med.Microbiol.38, 117–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Uithoven K.A., Schmidt J.C., Ballman M.E.: Rapid identification of biological warfare agents using an instrument employing a light addressable potentiometric sensor and a flow-through immunofiltration-enzyme assay system. Biosens.Bioelectron.14, 761–770 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wang T., Qi Z., Wu B., Zhu Z., Yang Y., Cui B., Dai R., Zhang Q., Qiu Y., Wang Z., Wang H., Guo Z., Wang X., Yang R.: A new purification strategy for fraction 1 capsular antigen and its efficacy against Yersinia pestis virulent strain challenge. Protein Expr.Purif.61, 7–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse C.A., Hottel H.E.: Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol.Cell Probes21, 92–96 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Williams J.E., Gentry M.K., Braden C.A., Leister F., Yolken R.H.: Use of enzyme-linked immunosorbent assay to measure antigenaemia during acute plague. Bull.WHO62, 463–466 (1984).

    CAS  PubMed  Google Scholar 

  • Zhang F., Liu W., Chu M.C., He J., Duan Q., Wu X.M., Zhang P.H., Zhao Q.M., Yang H., Xin Z.T., Cao W.C.: Francisella tularensis in rodents, China. Emerg.Infect.Dis.12, 994–996 (2006).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pohanka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohanka, M., Skládal, P. Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review. Folia Microbiol 54, 263–272 (2009). https://doi.org/10.1007/s12223-009-0046-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0046-1

Keywords

Navigation