Skip to main content

Advertisement

Log in

A new indicator cell line established to monitor bovine foamy virus infection

  • Published:
Virologica Sinica

Abstract

In order to improve the accuracy for quantitating the bovine foamy virus (BFV) in vitro, we developed a baby hamster kidney cell (BHK)-21-derived indicator cell line containing a plasmid that encodes the firefly luciferase driven by the BFV long terminal repeat promoter (LTR, from −7 to 1012). The BFV titer could be determined by detecting the luciferase expression since the viral trans-activator BTas protein activates the promoter activity of the LTR. One clone, designated BFVL, was selected from ten neomycin-resistant clones. BFVL showed a specific and inducible dose- and time-dependent luciferase activity in response to BFV infection. Although the changes in luciferase activity of BFVL peaked at 84 h post infection, it was possible to differentiate infected and uninfected cells at 48 h post infection. A linear relationship was established between the multiplicity of infection (MOI) of BFV and the activated ratio of luciferase expression in BFVL. Moreover, the sensitivity of the BFVL-based assay for detecting infectious BFV was 10,000 times higher than the conventional CPE-based assay at 48 h post infection. These findings suggest that the BFVL-based assay is rapid, easy, sensitive, quantitative and specific for detection of BFV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broussard S R, Comuzzie A G, Leighton K L, et al. 1997. Characterization of new simian foamy viruses from African nonhuman primates. Virology, 237: 349–359.

    Article  PubMed  CAS  Google Scholar 

  2. Delelis O, Lehmann-Che J, Saib A. 2004. Foamy viruses—a world apart. Curr Opin Microbiol, 7: 400–406.

    Article  PubMed  CAS  Google Scholar 

  3. Diao L, Zhang B, Fan J, et al. 2005. Herpes virus proteins ICP0 and BICP0 can activate NF-kappaB by catalyzing IkappaBalpha ubiquitination. Cell Signal, 17: 217–229.

    Article  PubMed  CAS  Google Scholar 

  4. Hatama S, Otake K, Omoto S, et al. 2001. Isolation and sequencing of infectious clones of feline foamy virus and a human/feline foamy virus Env chimera. J Gen Virol, 82: 2999–3004.

    PubMed  CAS  Google Scholar 

  5. He F, Blair W S, Fukushima J, et al. 1996. The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol, 70: 3902–3908.

    PubMed  CAS  Google Scholar 

  6. Herchenroder O, Renne R, Loncar D, et al. 1994. Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology, 201: 187–199.

    Article  PubMed  CAS  Google Scholar 

  7. Hill C L, Bieniasz P D, McClure M O. 1999. Properties of human foamy virus relevant to its development as a vector for gene therapy. J Gen Virol, 80(Pt 8): 2003–2009.

    PubMed  CAS  Google Scholar 

  8. Hirata R K, Miller A D, Andrews R G, et al. 1996. Transduction of hematopoietic cells by foamy virus vectors. Blood, 88: 3654–3661.

    PubMed  CAS  Google Scholar 

  9. Hsiung G D, Fong C K Y, Landry M L. 1994. Hsiung’s diagnostic virology: as illustrated by light and electron microscopy. 4th ed. New Haven: Yale University Press.

    Google Scholar 

  10. Kido K, Doerks A, Lochelt M, et al. 2002. Identification and functional characterization of an intragenic DNA binding site for the spumaretroviral trans-activator in the human p57Kip2 gene. J Biol Chem, 277: 12032–12039.

    Article  PubMed  CAS  Google Scholar 

  11. Lecellier C H, Neves M, Giron M L, et al. 2002. Further characterization of equine foamy virus reveals unusual features among the foamy viruses. J Virol, 76: 7220–7227.

    Article  PubMed  CAS  Google Scholar 

  12. Linial M. 2000. Why aren’t foamy viruses pathogenic? Trends Microbiol, 8: 284–289.

    Article  PubMed  CAS  Google Scholar 

  13. Liu S, Chen H, Chen J, et al. 1997. Isolation and identification of a bovine spuma virus isolate 3026. Chinese Journal of Virology, 13: 140–145.

    CAS  Google Scholar 

  14. Ma Z, Hao P, Yao X, et al. 2008. Establishment of an indicator cell line to quantify bovine foamy virus infection. J Basic Microbiol, 48: 278–283.

    Article  PubMed  CAS  Google Scholar 

  15. Materniak M, Bicka L, Kuzmak J. 2006. Isolation and partial characterization of bovine foamy virus from Polish cattle. Pol J Vet Sci, 9: 207–211.

    PubMed  CAS  Google Scholar 

  16. Mergia A, Luciw P A. 1991. Replication and regulation of primate foamy viruses. Virology, 184: 475–482.

    Article  PubMed  CAS  Google Scholar 

  17. Miyazawa T, Itagaki S, Tomonaga K, et al. 1995. Establishment of carrier-state infection of a feline renal cell line with feline syncytial virus. J Vet Med Sci, 57: 65–69.

    Article  PubMed  CAS  Google Scholar 

  18. Murray S M, Linial M L. 2006. Foamy virus infection in primates. J Med Primatol, 35:225–235.

    Article  PubMed  CAS  Google Scholar 

  19. Phung H T, Tohya Y, Shimojima M, et al. 2003. Establishment of a GFP-based indicator cell line to quantitate feline foamy virus. J Virol Methods, 109: 125–131.

    Article  PubMed  CAS  Google Scholar 

  20. Russell D W, Miller A D. 1996. Foamy virus vectors. J Virol, 70: 217–222.

    PubMed  CAS  Google Scholar 

  21. Santoro M G, Rossi A, Amici C. 2003. NF-kappaB and virus infection: who controls whom. EMBO J, 22: 2552–2560.

    Article  PubMed  CAS  Google Scholar 

  22. Schweizer M, Fleps U, Jackle A, et al. 1993. Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology 192: 663–666.

    Article  PubMed  CAS  Google Scholar 

  23. Tai H Y, Sun K H, Kung S H, et al. 2001. A quantitative assay for measuring human foamy virus using an established indicator cell line. J Virol Methods, 94: 155–162.

    Article  PubMed  CAS  Google Scholar 

  24. Tan J, Qiao W, Wang J, et al. 2008. IFP35 is involved in the antiviral function of interferon by association with the viral tas transactivator of bovine foamy virus. J Virol, 82: 4275–4283.

    Article  PubMed  CAS  Google Scholar 

  25. Tobaly-Tapiero J, Bittoun P, Neves M, et al. 2000. Isolation and characterization of an equine foamy virus. J Virol, 74: 4064–4073.

    Article  PubMed  CAS  Google Scholar 

  26. Wang J, Guo H Y, Jia R, et al. 2010. Preparation of BFV Gag Antiserum and Preliminary Study on Cellular Distribution of BFV. Virol Sin, 25: 115–122.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Tan J, Guo H, et al. 2010. Bovine foamy virus transactivator BTas interacts with cellular RelB to enhance viral transcription. J Virol, 84: 11888–11897.

    Article  PubMed  CAS  Google Scholar 

  28. Wang J, Tan J, Zhang X, et al. 2010. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription. Virology, 400: 215–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-tao Qiao.

Additional information

Foundation items: National Natural Science Foundation of China (31070135, 81071343).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Hy., Liang, Zb., Li, Y. et al. A new indicator cell line established to monitor bovine foamy virus infection. Virol. Sin. 26, 315–323 (2011). https://doi.org/10.1007/s12250-011-3204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-011-3204-y

Key words

Navigation