Skip to main content

Advertisement

Log in

Experimental models of neuromyelitis optica: current status, challenges and future directions

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuromyelitis optica (NMO) is a recurrent inflammatory disease that predominantly attacks the opticnerves and spinal cord. NMO-IgG, the specific autoantibody present in the vast majority of NMO patients, targets the astrocytic water channel protein aquaporin 4 (AQP4), and differentiates NMO from multiple sclerosis. The growing clinical and research interest in NMO makes it urgent to produce an animal model of NMO. The pathogenic effect of anti-AQP4 antibodies derived from the serum of patients paves the way to generating an experimental model based on the anti-AQP4-mediated astrocyte damage. In this review, we discuss the contribution of experimental models to the understanding of the pathogenesis of the disease and drug development. Key questions raised by the existing models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007, 6: 805–815.

    Article  CAS  PubMed  Google Scholar 

  2. Balcer LJ. Clinical practice. Optic neuritis. N Engl J Med 2006, 354: 1273–1280.

    Article  CAS  PubMed  Google Scholar 

  3. Foroozan R, Buono LM, Savino PJ, Sergott RC. Acute demyelinating optic neuritis. Curr Opin Ophthalmol 2002, 13: 375–380.

    Article  PubMed  Google Scholar 

  4. Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 2005, 4: 111–121.

    Article  PubMed  Google Scholar 

  5. Arnold AC. Evolving management of optic neuritis and multiple sclerosis. Am J Ophthalmol 2005, 139: 1101–1108.

    Article  PubMed  Google Scholar 

  6. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004, 364: 2106–2112.

    Article  CAS  PubMed  Google Scholar 

  7. Wakakura M, Minei-Higa R, Oono S, Matsui Y, Tabuchi A, Kani K, et al. Baseline features of idiopathic optic neuritis as determined by a multicenter treatment trial in Japan. Optic Neuritis Treatment Trial Multicenter Cooperative Research Group (ONMRG). Jpn J Ophthalmol 1999, 43: 127–132.

    Article  CAS  PubMed  Google Scholar 

  8. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999, 53: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  9. Wingerchuk DM, Weinshenker BG. Neuromyelitis optica: clinical predictors of a relapsing course and survival. Neurology 2003, 60: 848–853.

    Article  PubMed  Google Scholar 

  10. Rodriguez M, Siva A, Cross SA, O’ Brien PC, Kurland LT. Optic neuritis: a population-based study in Olmsted County, Minnesota. Neurology 1995, 45: 244–250.

    Article  CAS  PubMed  Google Scholar 

  11. Jarius S, Wildemann B. ‘Noteomielite’ accompanied by acute amaurosis (1844). An early case of neuromyelitis optica. J Neurol Sci 2012, 313: 182–184.

    Article  CAS  PubMed  Google Scholar 

  12. Mandler RN, Davis LE, Jeffery DR, Kornfeld M. Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol 1993, 34: 162–168.

    Article  CAS  PubMed  Google Scholar 

  13. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002, 125: 1450–1461.

    Article  PubMed  Google Scholar 

  14. Lennon V A, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202: 473–477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007, 130: 1224–1234.

    Article  CAS  PubMed  Google Scholar 

  16. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007, 130: 1194–1205.

    Article  PubMed  Google Scholar 

  17. Kinoshita M, Nakatsuji Y, Moriya M, Okuno T, Kumanogoh A, Nakano M, et al. Astrocytic necrosis is induced by antiaquaporin- 4 antibody-positive serum. Neuroreport 2009, 20: 508–512.

    Article  CAS  PubMed  Google Scholar 

  18. Howe CL, Kaptzan T, Magana SM, Ayers-Ringler JR, La France-Corey RG, Lucchinetti CF. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia 2014, 62: 692–708.

    Article  PubMed  Google Scholar 

  19. Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 2008, 181: 5730–5737.

    Article  CAS  PubMed  Google Scholar 

  20. Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 2008, 205: 2473–2481.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007, 69: 2221–2231.

    Article  CAS  PubMed  Google Scholar 

  22. Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009, 66: 630–643.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 2011, 70: 943–954.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Neuromyelitis optica: Passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 2009, 386: 623–627.

    Article  CAS  PubMed  Google Scholar 

  25. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 2010, 394: 205–210.

    Article  CAS  PubMed  Google Scholar 

  26. Kitic M, Hochmeister S, Wimmer I, Bauer J, Misu T, Mader S, et al. Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathologica Communications 2013, 1: 5.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 2010, 133: 349–361.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Saadoun S, Waters P, Macdonald C, Bridges LR, Bell BA, Vincent A, et al. T cell deficiency does not reduce lesions in mice produced by intracerebral injection of NMO-IgG and complement. J Neuroimmunol 2011, 235: 27–32.

    Article  CAS  PubMed  Google Scholar 

  29. Phuan PW, Zhang H, Asavapanumas N, Leviten M, Rosenthal A, Tradtrantip L, et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathol 2013, 125: 829–840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Phuan PW, Anderson MO, Tradtrantip L, Zhang H, Tan J, Lam C, et al. A small-molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J Biol Chem 2012, 287: 36837–36844.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 2012, 71: 314–322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 2012, 71: 323–333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Asavapanumas N, Ratelade J, Papadopoulos MC, Bennett JL, Levin MH, Verkman AS. Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. J Neuroinflammation 2014, 11: 16.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhang H, Verkman AS. Longi tudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J Autoimmun 2014, 53: 67–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Asavapanumas N, Ratelade J, Verkman AS. Unique neuromyelitis optica pathology produced in naive rats by intracerebral administration of NMO-IgG. Acta Neuropathol 2014, 127: 539–551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Misu T, Hoftberger R, Fujihara K, Wimmer I, Takai Y, Nishiyama S, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol 2013, 125: 815–827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Geis C, Ritter C, Ruschil C, Weishaupt A, Grunewald B, Stoll G, et al. The intrinsic pathogenic role of a utoantibodies to aquaporin 4 mediating spinal cord disease in a rat passivetransfer model. Exp Neurol 2014.

    Google Scholar 

  38. Kalluri SR, Rothhammer V, Staszewski O, Srivastava R, Petermann F, Prinz M, et al. Functional characterization of aquaporin-4 specific T cells: towards a model for neuromyelitis optica. PLoS One 2011, 6: e16083.

    Article  Google Scholar 

  39. Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BA, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 2012, 72: 53–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 2006, 116: 2393–2402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a doubletransgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 2006, 116: 2385–2392.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bell JC, Liu Q, Gan Y, Liu Y, Shi FD, Turner GH. Visualization of inflammation and demyelination in 2D2 transgenic mice with rodent MRI. J Neuroimmunol 2013, 264: 35–40.

    Article  CAS  PubMed  Google Scholar 

  43. Snapper CM, Paul WE. Interferon-g amma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987, 236: 944–947.

    Article  CAS  PubMed  Google Scholar 

  44. Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC, et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 1998, 187: 1193–1204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol 2011, 23: 565–573.

    Article  CAS  PubMed  Google Scholar 

  46. Wang HH, Dai YQ, Qiu W, Lu ZQ, Peng FH, Wang YG, et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci 2011, 18: 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  47. Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M, Takakura Y, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 2005, 128: 988–1002.

    Article  PubMed  Google Scholar 

  48. Uzawa A, Mori M, Hayakawa S, Masuda S, Nomura F, Kuwabara S. Expression of chemokine receptors on peripheral blood lymphocytes in multiple sclerosis and neuromyelitis optica. BMC Neurol 2010, 10: 113.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Li YJ, Zhang F, Qi Y, Chang GQ, Fu Y, Su L, et al. Association of circulating follicular helper T cells with disease course of NMO spectrum disorders. J Neuroimmunol 2014.

    Google Scholar 

  50. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 2009, 66: 617–629.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J Neuroinflammation 2012, 9: 14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Jarius S, Wildemann B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 2010, 6: 383–392.

    Article  CAS  PubMed  Google Scholar 

  53. Yang CS, Yang L, Li T, Zhang DQ, Jin WN, Li MS, et al. Responsiveness to reduced dosage of rituximab in Chinese patients with neuromyelitis optica. Neurology 2013, 81: 710–713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kim SH, Huh SY, Lee SJ, Joung A, Kim HJ. A 5-year followup of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol 2013, 70: 1110–1117.

    Article  PubMed  Google Scholar 

  55. Kitley J, Woodhall M, Waters P, Leite MI, Devenney E, Craig J, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 2012, 79: 1273–1277.

    Article  CAS  PubMed  Google Scholar 

  56. Kitley J, Leite MI, Kuker W, Quaghebeur G, George J, Waters P, et al. Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol 2013, 70: 1375–1381.

    Article  PubMed  Google Scholar 

  57. Brilot F, Dale RC, Selter RC, Grummel V, Kalluri SR, Aslam M, et al. Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann Neurol 2009, 66: 833–842.

    Article  CAS  PubMed  Google Scholar 

  58. Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 2011, 8: 184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Saadoun S, Waters P, Owens GP, Bennett JL, Vincent A, Papadopoulos MC. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol Commun 2014, 2: 35.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Tuzun E, Tzartos J, Ekizoglu E, Stergiou C, Zisimopoulou P, Coban A, et al. Aquaporin-1 antibody in neuromyelitis optical patients. Eur Neurol 2014, 72: 271–272.

    Article  PubMed  Google Scholar 

  61. Park JH, Hwang J, Min JH, Kim BJ, Kang ES, Lee KH. Presence of anti-Ro/SSA antibody may be associated with anti-aquaporin-4 antibody positivity in neuromyelitis optica spectrum disorder. J Neurol Sci 2014.

    Google Scholar 

  62. Titulaer MJ, Hoftberger R, Iizuka T, Leypoldt F, McCracken L, Cellucci T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014, 75: 411–428.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Höftberger R, Sepulveda M, Armangue T, Blanco Y, Rostasy K, Cobo Calvo A, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015, 21: 866–874.

    Article  PubMed  Google Scholar 

  64. Li W, Minohara M, Piao H, Matsushita T, Masaki K, Matsuoka T, et al. Association of anti-Helicobacter pylori neutrophilactivating protein antibody response with anti-aquaporin-4 autoimmunity in Japanese patients with multiple sclerosis and neuromyelitis optica. Mult Scler 2009, 15: 1411–1421.

    Article  CAS  PubMed  Google Scholar 

  65. Long Y, Gao C, Qiu W, Hu X, Shu Y, Peng F, et al. Helicobacter pylori infection in neuromyelitis optica and multiple sclerosis. Neuroimmunomodulation 2013, 20: 107–112.

    Article  CAS  PubMed  Google Scholar 

  66. Min JH, Waters P, Vincent A, Cho HJ, Joo BE, Woo SY, et al. Low levels of vitamin D in neuromyelitis optica spectrum disorder: association with disease disability. PLoS One 2014, 9: e107274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yan, Y. Experimental models of neuromyelitis optica: current status, challenges and future directions. Neurosci. Bull. 31, 735–744 (2015). https://doi.org/10.1007/s12264-015-1552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1552-6

Keywords

Navigation