Skip to main content
Log in

Novel combinational treatment of cisplatin with cyclophilin a inhibitors in human heptocellular carcinomas

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The fungal cyclic peptide cyclosporin A (CsA) and fungal macrolide compound sanglifehrin A (SFA) have been developed as immunosuppressive drugs and both bind to cyclophilin A (CypA). CypA has been reported to be upregulated in diverse human cancers including hepatocellular carcinomas (HCC). CypA overexpression induces resistance to hypoxia and chemotherapeutic agents such as cisplatin in cancer cells. In this report, it was shown that CsA or SFA can synergistically increase apoptotic cell death in HCC cells, when combined with cisplatin. The increased cytotoxicity was accompanied by enhanced oxidative stress. The effects of CsA and SFA were due to inhibition of CypA activity. It was also shown that CsA and SFA abrogate cisplatin resistance as well as protection against hypoxia that is provided by CypA overexpression. Importantly, the synergistic effect of CsA or SFA with cisplatin was shown even in p53 defective Hep3B cells. Finally, overexpression of CypA was observed in human HCC tissues. In conclusion, CsA or SFA synergistically enhances cisplatin-induced apoptosis in HCC cells including the p53-defective Hep3B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassan, R., Lerede, T., Borleri, G., Chiodini, B., Rossi, A., Buelli, M., Rambaldi, A., Viero, P., and Barbui, T., Phase I trial with escalating doses of idarubicin and multidrug resistance reversal by short-course cyclosporin A, sequential high-dose cytosine arabinoside, and granulocyte colony-stimulating factor for adult patients with refractory acute leukemia. Haematologica, 87, 257–263 (2002).

    CAS  PubMed  Google Scholar 

  • Choi, K. J., Piao, Y. J., Lim, M. J., Kim, J. H., Ha, J., Choe, W., and Kim, S. S., Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia-and cisplatin-induced cell death. Cancer Res., 67, 3654–3662 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Clarke, S. J., McStay, G. P., and Halestrap, A. P., Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporine A. J. Biol. Chem., 277, 34793–34799 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G. M., Caspases: The executioners of apoptosis. Biochem. J., 326, 1–16 (1997).

    CAS  PubMed  Google Scholar 

  • Doyle, V., Virji, S., and Crompton, M., Evidence that cyclophilin-A protects cells against oxidative stress. Biochem. J., 341, 127–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Fehr, T., Kallen, J., Oberer, L., Sanglier, J. J., and Schilling, W., Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92-308110. II. Structure elucidation, stereochemistry and physicochemical properties. J. Antibiot (Tokyo)., 52, 474–479 (1999).

    CAS  Google Scholar 

  • Fillies, T., Werkmeister, R., van Diest, P. J., Brandt, B., Joos, U., and Buerger, H., HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer, 5, 84 (2004).

    Article  Google Scholar 

  • Frei, U. A., Neumayer, H. H., Buchholz, B., Niese, D., and Mueller, E. A., Randomized, double-blind, one-year study of the safety and tolerability of cyclosporine microemulsion compared with conventional cyclosporine in renal transplant patients. International Sandimmun Neoral Study Group. Transplantation, 65, 1455–1460 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J., and Speicher, D. W., Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science, 226, 544–547 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Hinkle, R. T., Hodge, K. M., Cody, D. B., Sheldon, R. J., Kobilka, B. K., and Isfort, R. J., Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 400, 576–581 (1999).

    Article  Google Scholar 

  • Hirsch-Ernst, K. I., Ziemann, C., Rustenbeck, I., and Kahl, G. F., Inhibitors of mdr1-dependent transport activity delay accumulation of the mdr1 substrate rhodamine 123 in primary rat hepatocyte cultures. Toxicology, 167, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ho, I. C., Kim, J. H., Rooney, J. W., Spiegelman, B. M., and Glimcher, L. H., A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis. Proc. Natl. Acad. Sci. U. S. A., 95, 15537–15541 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hong, F., Lee, J., Song, J. W., Lee, S. J., Ahn, H., Cho, J. J., Ha, J., and Kim, S. S., Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin Ainduced cytotoxicity. FASEB J., 16, 1633–1635 (2002).

    CAS  PubMed  Google Scholar 

  • Hong, F., Lee, J., Piao, Y. J., Jae, Y. K., Kim, Y. J., Oh, C., Seo, J. S., Yun, Y. S., Yang, C. W., Ha, J., and Kim, S. S., Transgenic mice overexpressing cyclophilin A are resistant to cyclosporin A-induced nephrotoxicity via peptidylprolyl cis-trans isomerase activity. Biochem. Biophys. Res. Commun., 316, 1073–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Howard, B. A., Zheng, Z., Campa, M. J., Wang, M. Z., Sharma, A., Haura, E., Herndon, J. E., 2nd, Fitzgerald, M. C., Bepler, G., and Patz, E. F. Jr., Translating biomarkers into clinical practice: prognostic implications of cyclophilin A and macrophage migratory inhibitory factor identified from protein expression profiles in non-small cell lung cancer. Lung Cancer, 46, 313–323 (2004).

    Article  PubMed  Google Scholar 

  • Howard, B. A., Furumai, R., Campa, M. J., Rabbani, Z. N., Vujaskovic, Z., Wang, X. F., and Patz, E. F. Jr., Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res., 65, 8853–8860 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ivery, M. T., Immunophilins: switched on protein binding domains? Med. Res. Rev., 20, 452–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S. H., Piao, Y. J., Choi, K. J., Hong, F., Baek, H. W., Kang, I., Ha, J., and Kim, S. S., Chang, S. G., Prednisolone suppresses cyclosporin A-induced apoptosis but not cell cycle arrest in MDCK cells. Arch. Biochem. Biophys., 435, 382–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Jordan, P. and Carmo-Fonseca, M., Molecular mechanisms involved in cisplatin cytotoxicity. Cell. Mol. Life Sci., 57, 1229–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kartalou, M. and Essigmann, J. M., Mechanisms of resistance to cisplatin. Mutat. Res., 478, 23–43 (2001).

    CAS  PubMed  Google Scholar 

  • Li, M., Wang, H., Li, F., Fisher, W. E., Chen, C., and Yao, Q., Effect of cyclophilin A on gene expression in human pancreatic cancer cells. Am. J. Surg., 190, 739–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Llovet, J. M., Bustamante, J., Castells, A., Vilana, R., Ayuso Mdel, C., Sala, M., Bru, C., Rodes, J., and Bruix, J., Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology, 29, 62–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Llovet, J. M., Burroughs, A., and Bruix, J., Hepatocellular carcinoma. Lancet, 362, 1907–1917 (2003).

    Article  PubMed  Google Scholar 

  • Lum, B. L., Kaubisch, S., Fisher, G. A., Brown, B. W., and Sikic, B. I., Effect of high-dose cyclosporine on etoposide pharmacodynamics in a trial to reverse P-glycoprotein (MDR1 gene) mediated drug resistance. Cancer Chemother. Pharmacol., 45, 305–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., and Rosenthal, N., IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400, 581–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, M., Sakamoto, N., Tanabe, Y., Koyama, T., Itsui, Y., Takeda, Y., Chen, C. H., Kakinuma, S., Oooka, S., Maekawa, S., Enomoto, N., and Watanabe, M., Suppression of hepatitis C virus replication by cyclosporin A is mediated by blockade of cyclophilins. Gastroenterology, 129, 1031–1041 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nakahara, C., Nakamura, K., Yamanaka, N., Baba, E., Wada, M., Matsunaga, H., Noshiro, H., Tanaka, M., Morisaki, T., and Katano, M., Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factorkappaB activation in human gastric carcinoma cells. Clin. Cancer Res., 9, 5409–5416 (2003).

    CAS  PubMed  Google Scholar 

  • Orth, K., Chinnaiyan, A. M., Garg, M., Froelich, C. J., and Dixit, V. M., The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem., 271, 16443–16446 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Parkin, D. M., Pisani, P., and Ferlay, J., Estimates of the worldwide incidence of 25 major cancers in 1990. Int. J. Cancer, 80, 827–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pyrzynska, B., Serrano, M., Martinez, A., and Kaminska, B., Tumor suppressor p53 mediates apoptotic cell death triggered by cyclosporin A. J. Biol. Chem., 277, 14102–14108 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rey, O., Baluda, M. A., and Park, N. H., Differential gene expression in neoplastic and human papillomavirus-immortalized oral keratinocytes. Oncogene, 18, 827–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Seko, Y., Fujimura, T., Taka, H., Mineki, R., Murayama, K., and Nagai, R., Hypoxia followed by reoxygenation induces secretion of cyclophilin A from cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun., 317, 162–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., Person, M. D., Zhu, J., Abbruzzese, J. L., and Li, D., Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res., 64, 9018–9026 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Siddik, Z. H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265–7279 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sigal, N. H., Dumont, F., Durette, P., Siekierka, J. J., Peterson, L., Rich, D. H., Dunlap, B. E., Staruch, M. J., Melino, M. R., Koprak, S. L., Williams, D., Witzel, B., and Pisano, J. M., Is cyclophilin involved in the immunosuppressive and nephrotoxic mechanism of action of cyclosporin A? J. Exp. Med., 173, 619–628 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Wenger, R. M., Cyclosporine: conformation and analogues as tools for studying its mechanism of action. Transplant. Proc., 2, 313–318 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J. Novel combinational treatment of cisplatin with cyclophilin a inhibitors in human heptocellular carcinomas. Arch. Pharm. Res. 33, 1401–1409 (2010). https://doi.org/10.1007/s12272-010-0914-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0914-x

Key words

Navigation