Skip to main content
Log in

Involvement of heme oxygenase-1 induction in inhibitory effect of ethyl gallate isolated from Galla Rhois on nitric oxide production in RAW 264.7 macrophages

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present study, we investigated an anti-inflammatory effect of ethyl gallate (EG) isolated from Galla Rhois as evaluated by inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and a potential role of heme oxygenase-1 (HO-1) in the inhibition of NO production elicited by EG. Treatment of RAW264.7 macrophages with EG significantly inhibited the production of NO and iNOS expression stimulated by lipopolysaccharide (LPS). We also demonstrated that EG treatment increased HO-1 mRNA and protein expression, as assessed by quantitative RT-PCR and Western blot analysis. EG treatment also increased the levels of nuclear factor-erythroid 2-related factor 2, which is critical for transcriptional induction of HO-1. In addition, treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, counteracted the inhibitory effect of EG on nitrite production, suggesting that HO-1 is, at least in part, implicated in the inhibition of NO production induced by EG treatment. Taken together, these results indicate that EG isolated from Galla Rhois suppresses NO production in LPS-stimulated RAW 264.7 macrophages via HO-1 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, Y. J., Lee, C. O., Kweon, J. H., Ahn, J. W., and Park, J. H., Growth-inhibitory effects of Galla Rhois derived tannins on intestinal bacteria. J. Appl. Microbiol., 84, 439–443 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Alcaraz, M. J., Vicente, A. M., Araico, A., Dominguez, J. N., Terencio, M. C., and Ferrandiz, M. L., Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. Br. J. Pharmacol., 142, 1191–1199 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ata, N., Oku, T., Hattori, M., Fujii, H., Nakajima, M., and Saiki, I., Inhibition by galloylglucose (GG6-10) of tumor invasion through extracellular matrix and gelatinasemediated degradation of type IV collagens by metastatic tumor cells. Oncol. Res., 8, 503–511 (1996).

    PubMed  CAS  Google Scholar 

  • Beckman, J. S. and Koppenol, W. H., Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol., 271, C1424–C1437 (1996).

    PubMed  CAS  Google Scholar 

  • Chae, H. S., Kang, O. H., Choi, J. G., Oh, Y. C., Lee, Y. S., Brice, O. O., Chong, M. S., Lee, K. N., Shin, D. W., and Kwon, D. Y., Methyl gallate inhibits the production of interleukin-6 and nitric oxide via down-regulation of extracellular-signal regulated protein kinase in RAW 264.7 cells. Am. J. Chin. Med., 38, 973–983 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. G., Kang, O. H., Lee, Y. S., Oh, Y. C., Chae, H. S., Jang, H. J., Shin, D. W., and Kwon, D. Y., Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules, 14, 1773–1780 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra, G., Blokzijl, H., Bok, L., Homan, M., van Goor, H., Faber, K. N., Jansen, P. L., and Moshage, H., Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide. J. Pathol., 204, 296–303 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H. Y., Chu, L. C., Hua, K. F., and Chao, L. K., Heme oxygenase-1 mediates the anti-inflammatory effect of Curcumin within LPS-stimulated human monocytes. J. Cell. Physiol., 215, 603–612 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Park, H. H., Lee, S., Jun, C. D., Choi, B. J., Kim, S. Y., Kim, S. H., Kim, D. K., Park, J. S., Chae, B. S., and Shin, T. Y., The anti-anaphylactic effect of the gall of Rhus javanica is mediated through inhibition of histamine release and inflammatory cytokine secretion. Int. Immunopharmacol., 5, 1820–1829 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kroncke, K. D., Fehsel, K., and Kolb-Bachofen, V., Nitric oxide: cytotoxicity versus cytoprotection—how, why, when, and where? Nitric Oxide, 1, 107–120 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kubo, I., Kinst-Hori, I., Nihei, K., Soria, F., Takasaki, M., Calderon, J. S., and Cespedes, C. L., Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects. Z. Naturforsch. C, 58, 719–725 (2003).

    PubMed  CAS  Google Scholar 

  • Kwak, M. K., Itoh, K., Yamamoto, M., and Kensler, T. W., Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell. Biol., 22, 2883–2892 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Laskin, J. D., Heck, D. E., and Laskin, D. L., Multifunctional role of nitric oxide in inflammation. Trends Endocrinol. Metab., 5, 377–382 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. J., Lee, S. S., Chen, S. C., Ho, F. M., and Lin, W. W., Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia. Br. J. Pharmacol., 146, 378–388 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Lee, H., Kwon, Y., Lee, J. H., Kim, J., Shin, M. K., Kim, S. H., and Bae, H., Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J. Immunol., 185, 6698–6705 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Seo, G. S., and Sohn, D. H., Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase by butein in RAW 264.7 cells. Biochem. Biophys. Res. Commun., 323, 125–132 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Kim, J. Y., Seo, G. S., Kim, Y. C., and Sohn, D. H., Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW-264.7 macrophages. Inflamm. Res., 58, 257–262 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. S. and Chau, L. Y., Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med., 8, 240–246 (2002).

    Article  PubMed  CAS  Google Scholar 

  • MacMicking, J., Xie, Q. W., and Nathan, C., Nitric oxide and macrophage function. Annu. Rev. Immunol., 15, 323–350 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Maines, M. D., The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol., 37, 517–554 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Marletta, M. A., Nitric oxide synthase structure and mechanism. J. Biol. Chem., 268, 12231–12234 (1993).

    PubMed  CAS  Google Scholar 

  • Mori, T., Chang, C., Maurtua, D., and Hammond, G. B., Isolation of the active compound in Mauria heterophylla, a Peruvian plant with antibacterial activity. Phytother. Res., 20, 160–161 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Murase, T., Kume, N., Hase, T., Shibuya, Y., Nishizawa, Y., Tokimitsu, I., and Kita, T., Gallates inhibit cytok ineinduced nuclear translocation of NF-kappaB and expression of leukocyte adhesion molecules in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 19, 1412–1420 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S., and Pickett, C. B., Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem., 278, 4536–4541 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Otterbein, L. E., Soares, M. P., Yamashita, K., and Bach, F. H., Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol., 24, 449–455 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Park, E. J., Zhao, Y. Z., An, R. B., Kim, Y. C., and Sohn, D. H., 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from Galla Rhois protects primary rat hepatocytes from necrosis and apoptosis. Planta Med., 74, 1380–1383 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Poss, K. D. and Tonegawa, S., Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. U. S. A., 94, 10925–10930 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Prawan, A., Kundu, J. K., and Surh, Y. J., Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid. Redox Signal., 7, 1688–1703 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Sawai, Y., Moon, J. H., Sakata, K., and Watanabe, N., Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals. J. Agric. Food Chem., 53, 3598–3604 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Sawle, P., Foresti, R., Mann, B. E., Johnson, T. R., Green, C. J., and Motterlini, R., Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br. J. Pharmacol., 145, 800–810 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Shibata, H., Kondo, K., Katsuyama, R., Kawazoe, K., Sato, Y., Murakami, K., Takaishi, Y., Arakaki, N., and Higuti, T., Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 49, 549–555 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Srisook, K., Kim, C., and Cha, Y. N., Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the “one-two” punch. Antioxid. Redox Signal., 7, 1674–1687 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Stewart, A. G., Phan, L. H., and Grigoriadis, G., Physiological and pathophysiological roles of nitric oxide. Microsurgery, 15, 693–702 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tarpey, M. M. and Fridovich, I., Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ. Res., 89, 224–236 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y. P., Chinese Materia Medica. Harwood Academic Publishers, Amsterdam, pp. 659–660, (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hwan Sohn.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, PH., Hur, J., Kim, YC. et al. Involvement of heme oxygenase-1 induction in inhibitory effect of ethyl gallate isolated from Galla Rhois on nitric oxide production in RAW 264.7 macrophages. Arch. Pharm. Res. 34, 1545–1552 (2011). https://doi.org/10.1007/s12272-011-0917-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0917-2

Key words

Navigation