Skip to main content
Log in

Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

It has been reported that alkaloids derived from Coptis chinensis exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the inhibitory role of epiberberine in the early stages of 3T3-L1 adipocyte differentiation is uncharacterized. Here, we show that epiberberine had inhibitory effects on adipocyte differentiation and significantly decreased lipid accumulation by downregulating an adipocyte-specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1). Furthermore, we observed that epiberberine markedly suppressed the differentiation-mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly inhibited by treatment with epiberberine during adipogenesis. These results indicate that the anti-adipogenic mechanism of epiberberine is associated with inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of adipogenesis, such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the anti-adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 adipocyte differentiation. Moreover, the anti-adipogenic effects of epiberberine were not accompanied by modulation of β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. Journal of Biological Chemistry 274: 24965–24972.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S., and Y. Yoon. 2013. Anti-adipogenic activity of berberine is not mediated by the WNT/β-catenin pathway. Phytotherapy Research 27: 937–943.

    Article  CAS  PubMed  Google Scholar 

  • Baudry, A., Z.Z. Yang, and B.A. Hemmings. 2006. PKBα is required for adipose differentiation of mouse embryonic fibroblasts. Journal of Cell Science 119: 889–897.

    Article  CAS  PubMed  Google Scholar 

  • Baulande, S., and B. Fève. 2005. Identification of new genes involved in adipogenesis. Medical Science (Paris). 21: 26–28.

    Google Scholar 

  • Bennett, C.N., S.E. Ross, K.A. Longo, L. Bajnok, N. Hemati, K.W. Johnson, S.D. Harrison, and O.A. MacDougald. 2002. Regulation of Wnt signaling during adipogenesis. Journal of Biological Chemistry 277: 30998–31004.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J.S., J.H. Kim, M.Y. Ali, B.S. Min, G.D. Kim, and H.A. Jung. 2014. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 98: 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Claycombe, K.J., B.H. Jones, M.K. Standridge, Y. Guo, J.T. Chun, J.W. Taylor, and N. Moustaïd-Moussa. 1998. Insulin increases fatty acid synthase gene transcription in human adipocytes. American Journal of Physiology 274: R1253–R1259.

    CAS  PubMed  Google Scholar 

  • Cornelius, P., O.A. MacDougald, and M.D. Lane. 1994. Regulation of adipocyte development. Annual Review of Nutrition 14: 99–129.

    Article  CAS  PubMed  Google Scholar 

  • Cristancho, A.G., and M.A. Lazar. 2011. Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology 12: 722–734.

    Article  CAS  PubMed  Google Scholar 

  • Doggrell, S.A. 2005. Berberine-a novel approach to cholesterol lowering. Expert Opinion on Investigational Drugs 14: 683–685.

    Article  CAS  PubMed  Google Scholar 

  • Green, H., and M. Meuth. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3: 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Grundy, S.M. 2004. Obesity, metabolic syndrome, and cardiovascular disease. Journal of Clinical Endocrinology and Metabolism 89: 2595–2600.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y.L., H.L. Yu, D. Li, X.L. Meng, Z.Y. Zhou, Q. Yu, X.Y. Zhang, F.J. Wang, and C. Guo. 2011. In vitro inhibition of Huanglian [Rhizoma coptidis (L.)] and its six active alkaloids on six cytochrome P450 isoforms in human liver microsomes. Phytotherapy Research 25: 1660–1665.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, Y.S., W.H. Kuo, T.W. Lin, H.R. Chang, T.H. Lin, P.N. Chen, and S.C. Chu. 2007. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. Journal of Agriculture and Food Chemistry 55: 10437–10445.

    Article  CAS  Google Scholar 

  • Huang, C., Y. Zhang, Z. Gong, X. Sheng, Z. Li, W. Zhang, and Y. Qin. 2006. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochemical Biophysical Research Communications 348: 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Ikuta, A., and H. Itokawa. 1988. Alkaloids of tissue cultures of Nandina domestica. Phytochemistry 27: 2143–2145.

    Article  CAS  Google Scholar 

  • Jiang, X.F., L.J. Wang, X.G. Li, Z.Q. Zhao, and J.Y. Zhu. 2011. Isolation of jatrorrhizine and epiberberine in Coptis chinensis and their in vitro hypoglycemic effect. Guizhou Agricultural Sciences 9: 44–49.

    Google Scholar 

  • Jo, J., O. Gavrilova, S. Pack, W. Jou, S. Mullen, A.E. Sumner, S.W. Cushman, and V. Periwal. 2009. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Computational Biology 5: e1000324.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung, H.A., B.S. Min, T. Yokozawa, J.H. Lee, Y.S. Kim, and J.S. Choi. 2009. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biological and Pharmaceutical Bulletin 32: 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.A., N.Y. Yoon, H.J. Bae, B.S. Min, and J.S. Choi. 2008. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Archives of Pharmaceutical Research 31: 1405–1412.

    Article  CAS  Google Scholar 

  • Kawai, M., S. Mushiake, K. Bessho, M. Murakami, N. Namba, C. Kokubu, T. Michigami, and K. Ozono. 2007. Wnt/Lrp/β-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARγ and C/EBPα. Biochemical Biophysical Research Communications 363: 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Khandekar, M.J., P. Cohen, and B.M. Spiegelman. 2011. Molecular mechanisms of cancer development in obesity. Nature Reviews Cancer 11: 886–895.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.B., and B.M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development 10: 1096–1107.

    Article  CAS  Google Scholar 

  • Kim, S.W., A.M. Muise, P.J. Lyons, and H.S. Ro. 2001. Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation. Journal of Biological Chemistry 276: 10199–10206.

    Article  CAS  PubMed  Google Scholar 

  • Ko, W.H., X.Q. Yao, C.W. Lau, W.I. Law, Z.Y. Chen, W. Kwok, K. Ho, and Y. Huang. 2000. Vasorelaxant and antiproliferative effects of berberine. European Journal of Pharmacology 399: 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Kohn, A.D., S.A. Summers, M.J. Birnbaum, and R.A. Roth. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. Journal of Biological Chemistry 271: 31372–31378.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, C.L., C.W. Chi, and T.Y. Liu. 2004. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Letters 203: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, D.H., J.H. Lee, D.G. Kim, T. Kim, K.J. Lee, and J.Y. Ma. 2013. Inhibitory effects of hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation. Evidence Based Complementary and Alternative Medicine 2013: 413906.

    PubMed Central  PubMed  Google Scholar 

  • Lee, H.Y., and C.W. Kim. 1997. Studies on the constituents of Berberis amurensis Ruprecht. Korean Journal of Pharmacognosy 28: 257–263.

    Google Scholar 

  • Logan, C.Y., and R. Nusse. 2004. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, C.E., S. O’Rahilly, and J.J. Rochford. 2011. Adipogenesis at a glance. Journal of Cell Science 124: 2681–2686.

    Article  CAS  PubMed  Google Scholar 

  • Magun, R., B.M. Burgering, P.J. Coffer, D. Pardasani, Y. Lin, J. Chabot, and A. Sorisky. 1996. Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology 137: 3590–3593.

    CAS  PubMed  Google Scholar 

  • Manning, B.D., and L.C. Cantley. 2007. AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, M.Y., D.W. Seo, J.Y. Lee, M.K. Sung, Y.M. Lee, H.H. Jang, H.Y. Choi, J.H. Kim, and D.S. Park. 2011. Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes. Nutrition Research and Practice 5: 192–197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilch, P.F., and N. Bergenhem. 2006. Pharmacological targeting of adipocytes/fat metabolism for treatment of obesity and diabetes. Molecular Pharmacology 70: 779–785.

    Article  CAS  PubMed  Google Scholar 

  • Prestwich, T.C., and O.A. Macdougald. 2007. Wnt/β-catenin signaling in adipogenesis and metabolism. Current Opinion in Cell Biology 19: 612–617.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prusty, D., B.H. Park, K.E. Davis, and S.R. Farmer. 2002. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptorγ (PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. Journal of Biological Chemistry 277: 46226–46232.

    Article  CAS  PubMed  Google Scholar 

  • Rayalam, S., M.A. Della-Fera, and C.A. Baile. 2008. Phytochemicals and regulation of the adipocyte life cycle. Journal of Nutritional Biochemistry 19: 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology 7: 885–896.

    Article  CAS  PubMed  Google Scholar 

  • Seger, R., and E.G. Krebs. 1995. The MAPK signaling cascade. FASEB Journal 9: 726–735.

    CAS  PubMed  Google Scholar 

  • Smith, P.J., L.S. Wise, R. Berkowitz, C. Wan, and C.S. Rubin. 1988. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. Journal of Biological Chemistry 263: 9402–9408.

    CAS  PubMed  Google Scholar 

  • Tang, J.J., J.G. Li, W. Qi, W.W. Qiu, P.S. Li, B.L. Li, and B.L. Song. 2011. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabolism 13: 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Tang, L.Q., W. Wei, L.M. Chen, and S. Liu. 2006. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. Journal of Ethnopharmacology 108(1): 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.L., and D.C. Fang. 1990. Effect of epiberberine on α-adrenoceptors. Yao Xue Xue Bao 4: 289–292.

    Google Scholar 

  • Xing, Y., F. Yan, Y. Liu, Y. Liu, and Y. Zhao. 2010. Matrine inhibits 3T3-L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation. Biochemical and Biophysical Research Communications 396: 691–695.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., and K. Liao. 2004. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. Journal of Biological Chemistry 279: 35914–35922.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.H., J. Huang, K. Düvel, B. Boback, S. Wu, R.M. Squillace, C.L. Wu, and B.D. Manning. 2009. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4: e6189.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, M., and L. Chen. 2012. Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharmaceutica Sinica B 2: 379–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A6A1028677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Jung.

Additional information

Jae Sue Choi and Ji-Hye Kim have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Kim, JH., Ali, M.Y. et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways. Arch. Pharm. Res. 38, 2153–2162 (2015). https://doi.org/10.1007/s12272-015-0626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0626-3

Keywords

Navigation