Skip to main content
Log in

Hepatitis C virus infection stimulates transforming growth factor-β1 expression through up-regulating miR-192

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the molecular mechanisms underlying chronic liver injury and fibrosis caused by hepatitis C virus (HCV). This study revealed that miR-192 expreßsion was induced by HCV infection without affecting viral replication. However, viral-induced miR-192 up-regulated transforming growth factor-ß1 (TGF-ß1) expreßsion in liver cells at transcriptional level. TGF-ß1 stimulation by HCV-induced miR-192 was caused through ZEB1 down-regulation and TGF-ß1 increased miR-192 level via positive feedback pathway. Increase in miR-192 expreßsion by HCV infection was due to HCV core protein released and/or expressed by viral infection. TGF-ß1 promoter activity was also increased by HCV core protein in liver cells. Taken together, HCV infection resulted in increased TGF-ß1 transcription in hepatocytes through ZEB1 down-regulation by HCV core-mediated miR-192 stimulation. Importantly, miR-192 inhibition with anti-miR-192 rescued ZEB1 expression down-regulated by HCV infection, thus reducing the level of TGF-ß1 expression increased by HCV infection in hepatocytes. These results suggest a novel mechanism of HCV-mediated liver fibrogenesis with miR-192 being a potential molecular target to ameliorate viral pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandyopadhyay, S., Friedman, R.C., Marquez, R.T., Keck, K., Kong, B., Icardi, M.S., Brown, K.E., Burge, C.B., Schmidt, W.N., Wang, Y., et al. 2011. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J. Infect. Dis. 203, 1753–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bataller, R. and Brenner, D.A. 2005. Liver fibrosis. J. Clin. Invest. 115, 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beger, R.D., Bhattacharyya, S., Yang, X., Gill, P.S., Schnackenberg, L.K., Sun, J., and James, L.P. 2015. Translational biomarkers of acetaminophen-induced acute liver injury. Arch. Toxicol. 89, 1497–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blight, K.J., McKeating, J.A., and Rice, C.M. 2002. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, C.J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U.M., Schepeler, T., Orntoft, T.F., Andersen, C.L., and Dobbelstein, M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 68, 10094–10104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S.L. and Morgan, T.R. 2006. The natural history of hepatitis C virus (HCV) infection. Int. J. Med. Sci. 3, 47–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung, A.C., Huang, X.R., Meng, X., and Lan, H.Y. 2010. miR-192 mediates TGF-ß/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chusri, P., Kumthip, K., Hong, J., Zhu, C., Duan, X., Jilg, N., Fusco, D.N., Brisac, C., Schaefer, E.A., Cai, D., et al. 2016. HCV induces transforming growth factor ß1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci. Rep. 6, 22487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eminler, A.T., Ayyildiz, T., Irak, K., Kiyici, M., Gurel, S., Dolar, E., Gulten, M., and Nak, S.G. 2015. AST/ALT ratio is not useful in predicting the degree of fibrosis in chronic viral hepatitis patients. Eur. J. Gastroenterol. Hepatol. 27, 1361–1366.

    CAS  PubMed  Google Scholar 

  • Ha, M. and Kim, V.N. 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Gea, V. and Friedman, S.L. 2011. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6, 425–456.

    Article  CAS  PubMed  Google Scholar 

  • Hoofnagle, J.H. 2002. Course and outcome of hepatitis C. Hepatology 36, S21–29.

    Article  PubMed  Google Scholar 

  • Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C.M., and McKeating, J.A. 2003. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA 100, 7271–7276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida, H., Tatsumi, T., Hosui, A., Nawa, T., Kodama, T., Shimizu, S., Hikita, H., Hiramatsu, N., Kanto, T., Hayashi, N., et al. 2011. Alterations in microRNA expression profile in HCV-infected hepatoma cells: involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem. Biophys. Res. Commun. 412, 92–97.

    Article  CAS  PubMed  Google Scholar 

  • Jangra, R.K., Yi, M., and Lemon, S.M. 2010. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J. Virol. 84, 6615–6625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling, C. 2012. Liver-specific microRNA-122: Biogenesis and function. RNA Biol. 9, 137–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., and Sarnow, P. 2005. Modulation of hepatitis C virus RNA abundance by a liverspecific microRNA. Science 309, 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  • Kato, M., Arce, L., Wang, M., Putta, S., Lanting, L., and Natarajan, R. 2011. A microRNA circuit mediates transforming growth factor- ß1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, M., Dang, V., Wang, M., Park, J.T., Deshpande, S., Kadam, S., Mardiros, A., Zhan, Y., Oettgen, P., Putta, S., et al. 2013. TGF-ß induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6, ra43.

  • Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., Gunn, A., Nakagawa, Y., Shimano, H., Todorov, I., et al. 2009. TGF-ß activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Roßsi, J.J., and Natarajan, R. 2007. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-ß-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104, 3432–3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.J., Glick, A., Sporn, M.B., and Roberts, A.B. 1989. Characterization of the promoter region of the human transforming growth factor-ß1 gene. J. Biol. Chem. 264, 402–408.

    CAS  PubMed  Google Scholar 

  • Krieger, N., Lohmann, V., and Bartenschlager, R. 2001. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 75, 4614–4624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C.H., Kim, J.H., and Lee, S.W. 2014. The role of microRNAs in hepatitis C virus replication and related liver diseases. J. Microbiol. 52, 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C.H., Lee, Y.J., Kim, J.H., Lim, J.H., Kim, J.H., Han, W., Lee, S.H., Noh, G.J., and Lee, S.W. 2013. Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase. J. Virol. 87, 7064–7074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Masaki, T., and Lemon, S.M. 2013. miR-122 and the hepatitis C RNA genome: more than just stability. RNA Biol. 10, 919–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, W., Tsai, W.L., Shao, R.X., Wu, G., Peng, L.F., Barlow, L.L., Chung, W.J., Zhang, L., Zhao, H., Jang, J.Y., et al. 2010. HCV regulates TGF-ß1 production through the generation of reactive oxygen species in an NFKB-dependent manner. Gastroenterology 138, 2509–2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann, V., Körner, F., Koch, J., Herian, U., Theilmann, L., and Bartenschlager, R. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.

    Article  CAS  PubMed  Google Scholar 

  • Luna, J.M., Scheel, T.K., Danino, T., Shaw, K.S., Mele, A., Fak, J.J., Nishiuchi, E., Takacs, C.N., Catanese, M.T., de Jong, Y.P., et al. 2015. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell, J.T. and Olson, E.N. 2012. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradpour, D., Penin, F., and Rice, C.M. 2007. Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–463.

    Article  CAS  PubMed  Google Scholar 

  • Pichiorri, F., Suh, S.S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, D.M.Jr., Hofmainster, C., Alder, H., et al. 2010. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postigo, A.A. 2003. Opposing functions of ZEB proteins in the regulation of the TGFß/BMP signaling pathway. EMBO J. 22, 2443–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preßser, L.D., McRae, S., and Waris, G. 2013. Activation of TGF-ß1 promoter by hepatitis C virus-induced AP-1 and Sp1: Role of TGF-ß1 in hepatic stellate cell activation and invasion. PLoS One 8, e56367.

    Article  Google Scholar 

  • Putta, S., Lanting, L., Sun, G., Lawson, G., Kato, M., and Natarajan, R. 2012. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran, S., Ilias Basha, H., Sarma, N.J., Lin, Y., Crippin, J.S., Chapman, W.C., and Mohanakumar, T. 2013. Hepatitis C virus induced miR200c down modulates FAP-1, a negative regulator of Src signaling and promotes hepatic fibrosis. PLoS One 8, e70744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran, V., Jensen, P.N., and Major, E.O. 2007. MEK1/2 inhibitors block basal and transforming growth factor ß1-stimulated JC virus multiplication. J. Virol. 81, 6412–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppan, D., Krebs, A., Bauer, M., and Hahn, E.G. 2003. Hepatitis C and liver fibrosis. Cell Death Differ. 10 Suppl 1, S59–67.

    Article  CAS  PubMed  Google Scholar 

  • Song, B., Wang, Y., Kudo, K., Gavin, E.J., Xi, Y., and Ju, J. 2008. miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res. 14, 8080–8086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, H., Kato, N., Otsuka, M., Goto, T., Yoshida, H., Shiratori, Y., and Omata, M. 2004. Hepatitis C virus core protein upregulates transforming growth factor-ß1 transcription. J. Med. Virol. 72, 52–59.

    Article  CAS  PubMed  Google Scholar 

  • van der Meer, A.J., Farid, W.R., Sonneveld, M.J., de Ruiter, P.E., Boonstra, A., van Vuuren, A.J., Verheij, J., Hansen, B.E., de Knegt, R.J., van der Laan, L.J., et al. 2013. Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122. J. Viral Hepat. 20, 158–166.

    Article  PubMed  Google Scholar 

  • van Grunsven, L.A., Schellens, A., Huylebroeck, D., and Verschueren, K. 2001. SIP1 (Smad interacting protein 1) and δEF1 (δ-crystallin enhancer binding factor) are structurally similar transcriptional repressors. J. Bone Joint Surg. Am. 83-A Suppl 1, S40–47.

    PubMed  Google Scholar 

  • Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Krausslich, H.G., Mizokami, M., et al. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Wook Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lee, C.H. & Lee, SW. Hepatitis C virus infection stimulates transforming growth factor-β1 expression through up-regulating miR-192. J Microbiol. 54, 520–526 (2016). https://doi.org/10.1007/s12275-016-6240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6240-3

Keywords

Navigation