Skip to main content
Log in

Measuring temporal and spatial accuracy in trampolining

  • Technical Note
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

A new measurement system (horizontal displacement, time of flight, synchronicity—HDTS) was investigated regarding the latest changes to the international evaluation rules in trampoline gymnastics. It allows for the real-time measurement of objective criteria, such as flight time and landing position, without affecting the gymnast. The aim of this study was to investigate the temporal and spatial accuracy of a measurement tool via cross-validation. Temporal precision was additionally tested via high-speed video landing and takeoff, while a three-dimensional motion capturing system was incorporated for spatial precision. The Bland–Altman “limit of agreement approach” was used for the assessment of congruence between the measurement systems. The new measurement system presented an average spatial deviation of 3.2 cm and a temporal deviation between − 5.8 and + 6.4 ms for the landing and − 11.3 and + 11.3 ms for the takeoff. Given its temporal and spatial accuracy in determining flight time and landing position as identified through cross-validation, the novel HDTS system proved to be suitable for its use in trampoline competitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Stidwill TJ, Turcotte RA, Dixon P, Pearsall DJ (2009) Force transducer system for measurement of ice hockey skating force. Sports Eng 12(2):63–68. https://doi.org/10.1007/s12283-009-0033-4

    Article  Google Scholar 

  2. Lipps DB, Galecki AT, Ashton-Miller JA (2011) On the implications of a sex difference in the reaction times of sprinters at the Beijing olympics. PLoS ONE 6(10):e26141. https://doi.org/10.1371/journal.pone.0026141

    Article  Google Scholar 

  3. Lynx System Developers: The FinishLYNX Gold Package (2017) Datasheet and instructions. http://www.finishlynx.com/download/marketing-documents/cycling-packages/Road_Cycling_-_Gold_info.pdf. Assessed 1 March 2019

  4. Swiss Timing LTD: Swiss Timing. Video distance measurement. Datasheet and instructions. https://www.swisstiming.com/fileadmin/Resources/Data/Datasheets/DOCM_SJ_VDMS_1215_EN.pdf. Assessed 1 March 2019

  5. Collins H, Evans R (2008) You cannot be serious! Public understanding of technology with special reference to “Hawk-Eye”. Public Underst Sci 17(3):283–308. https://doi.org/10.1177/0963662508093370

    Article  Google Scholar 

  6. Bal B, Dureja G (2012) Hawk eye: a logical innovative technology use in sports for effective decision making. Sport Sci Rev 21(1–2):107–119. https://doi.org/10.2478/v10237-012-0006-6

    Article  Google Scholar 

  7. Fowler SC (2012) How feasible is officiating technology in football? Interactive multimedia conference’13, 1, 2013, Southampton, UK. https://pdfs.semanticscholar.org/908c/7a96ffc733d4181e21da007b7240780618fc.pdf. Accessed 1 Mar 2019

  8. FIG: Fédération Internationale de Gymnastique – Executive Committee. 2017–2020 Code of Points. http://www.fig-gymnastics.com/publicdir/rules/files/en_TRA%20CoP%202017-2020.pdf. Accessed 13 Aug 2018

  9. Acrosport Co. Ltd. Time Measurement Device (TMD-3). Datasheet and instructions. http://acrosport.ru/files/TMD-3_datasheet_en.pdf. Accessed 6 Sept 2017

  10. Ferger K, Zangh H, Kölzer S, Tiefenbacher K, Müller H (2013) Time of Flight – ein objektives Bewertungskriterium im Trampolinturnen? [Time of flight – an objective evaluation criterion in trampolining?]. In: Pott-Klindworth M, Pilz T (eds) Turnen – eine Bewegungskultur im Wandel, vol 231. Feldhaus Edition Czwalina, Hamburg, pp 11–20

    Google Scholar 

  11. Eisele A, Wyttenbach J, Kredel R, Riehle H (2015) Vergleich zweier Flugzeitmessgeräte für den Trampolinsport. In: Arampatzis (ed) Active Health: Bewegung ist gesund, p. 109

  12. Ferger K, Hackbarth M (2017) New way of determining horizontal displacement in competitive trampolining. Sci Gymnast J 9(2):303–310

    Google Scholar 

  13. Lenk C, Hackbarth M, Mylo M, Wiegand J, Ferger K (2017) Evaluation eines Messsystems für die Flugzeitbestimmung im Trampolinsport. In: Fichtner I (ed) Technologien im Leistungssport 2: Schriftenreihe für angewandte Trainingswissenschaft, vol 6. Meyer & Meyer Sport, Aachen, pp 75–79

    Google Scholar 

  14. Lenk C, Hackbarth M, Mylo M, Wiegand J, Ferger K (2016) Evaluation of a measurement system for determining flight times in trampoline sports. In: Wiemeyer J, Seyfarth A, Kollegger G et al (eds) Human movement and technology: book of abstracts—11th joint conference on motor control and learning, biomechanics and training, vol 1. Shaker Verlag GmbH, Aachen

  15. Lenk C, Mylo M, Ferger K (2017) Evaluation eines Messystems zur Bestimmung der Flugzeit und Landepunkte im Trampolinturnen. In: Korban S, Brams M, Hennig L, Heinen T (eds) Vielfalt und Vernetzung im Turnen: Jahrestagung der dvs-Kommission Gerätturnen vom 5.-7. September 2016 in Augsburg, Feldhaus Edition Czwalina, Schriften der Deutschen Vereinigung für Sportwissenschaft, Hamburg, vol 264, pp 27–40

  16. van Stralen KJ, Jager KJ, Zoccali C, Dekker FW (2008) Agreement between methods. Kidney Int 74(9):1116–1120

    Article  Google Scholar 

  17. Chatburn RL (1996) Evaluation of instrument error and method agreement. AANA J 64(3):261–268

    Google Scholar 

  18. Harris EF, Smith RN (2009) Accounting for measurement error: a critical but often overlooked process. Arch Oral Biol 54(Suppl 1):107–117

    Article  Google Scholar 

  19. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26(4):217–238

    Article  Google Scholar 

  20. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  Google Scholar 

  21. Bunce C (2009) Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol 148(1):4–6

    Article  Google Scholar 

  22. MATLAB. Version 8.2.0.29 (R2013b) (2013) The MathWorks Inc, Natick, Massachusetts

  23. FIG: Fédération Internationale de Gymnastique. Apparatus norms: part II. http://www.fig-gymnastics.com/publicdir/rules/files/en_Apparatus%20Norms.pdf. Accessed 13 Aug 2018

  24. FIG: Fédération Internationale de Gymnastique. Apparatus norms: part IV. http://www.fig-gymnastics.com/publicdir/rules/files/en_Apparatus%20Norms.pdf. Accessed 13 Aug 2018

Download references

Acknowledgements

We thank Dr. Marc H.E. de Lussanet for contributing to this work by supporting in the measurements and the video analyses. Our thanks go to Johannes Maier, General Management Eurotramp (Weilheim a.d. Teck, Germany) for the provision of the trampoline. Funding was provided by Bundesministerium für Wirtschaft und Energie (Grant No. ZF4068601RE5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Ferger.

Ethics declarations

Conflict of interest

Dr. Ferger reports grants from Federal Ministry of Economics and Energy, during the conduct of the study; In addition, Dr. Ferger has a patent “Force measuring system for trampoline” 14175727.8/Az. E-DE 114 2 0214/ED licensed. All the other authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of Topical Collection in Sports Engineering on Measuring Behavior in Sport and Exercise, edited by Dr. Tom Allen, Dr. Robyn Grant, Dr. Stefan Mohr and Dr. Jonathan Shepherd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferger, K., Hackbarth, M., Mylo, M.D. et al. Measuring temporal and spatial accuracy in trampolining. Sports Eng 22, 18 (2019). https://doi.org/10.1007/s12283-019-0310-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12283-019-0310-9

Keywords

Navigation