Skip to main content

Advertisement

Log in

Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus–host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein–flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang E, Ni H, Xu R, Barrett AD, Watowich SJ, Gubler DJ, Weaver SC (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74(7):3227–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A, Hartman S, Davis T, Coffey L, Mathiot CC, Tesh RB, Weaver SC (2004) Dengue emergence and adaptation to peridomestic mosquitoes. Emerg Infect Dis 10(10):1790–1796

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Christian E, Kahle KM, Mattia K, Puffer BA, Pfaff JM, Miler A, Paes C, Davidson E, Doranz BJ (2013) Atomic level functional model of dengue virus envelope protein infectivity. PNAS 110(46):18662–18667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abu Bakar S, Shafee N (2002) Outlook of dengue in Malaysia: a century later. Malays J Pathol 24(1):23–27

    Google Scholar 

  6. Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67(16):2773–2786

    Article  CAS  PubMed  Google Scholar 

  7. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22

    Article  CAS  PubMed  Google Scholar 

  8. R-f Qi, Zhang L, C-w Chi (2008) Biological characteristics of dengue virus and potential targets for drug design. Acta Biochim Biophys Sin 40(2):91–101

    Article  Google Scholar 

  9. Acosta EG, Castilla V, Damonte EB (2008) Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89(Pt 2):474–484

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12(9):1607–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20(1):105–110

    Article  PubMed  Google Scholar 

  12. Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. J Gen Virol 87(Pt 10):2755–2766

    Article  CAS  PubMed  Google Scholar 

  13. Huang CY, Butrapet S, Moss KJ, Childers T, Erb SM, Calvert AE, Silengo SJ, Kinney RM, Blair CD, Roehrig JT (2010) The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology 396(2):305–315

    Article  CAS  PubMed  Google Scholar 

  14. Klein DE, Choi JL, Harrison SC (2012) Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol 87(4):2287–2293

    Article  PubMed  Google Scholar 

  15. Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100(12):6986–6991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poh MK, Yip A, Zhang S, Priestle JP, Ma NL, Smit JM, Wilschut J, Shi PY, Wenk MR, Schul W (2009) A small molecule fusion inhibitor of dengue virus. Antivir Res 84(3):260–266

    Article  CAS  PubMed  Google Scholar 

  17. Wang QY, Patel SJ, Vangrevelinghe E, Xu HY, Rao R, Jaber D, Schul W, Gu F, Heudi O, Ma NL, Poh MK, Phong WY, Keller TH, Jacoby E, Vasudevan SG (2009) A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 53(5):1823–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim SP, Wang QY, Noble CG, Chen YL, Dong H, Zou B, Yokokawa F, Nilar S, Smith P, Beer D, Lescar J (2013) Ten years of dengue drug discovery: progress and prospects. Antivir Res 100(2):500–519

    Article  CAS  PubMed  Google Scholar 

  19. Pugach P, Ketas TJ, Michael E, Moore JP (2008) Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors. Virology 377(2):401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lalezari JP, Henry K, O’Hearn M, Montaner JSG, Piliero PJ, Trottier B, Walmsley S, Cohen C, Kuritzkes DR, Eron JJ, Chung J, DeMasi R, Donatacci L, Drobnes C, Delehanty J, Salgo M (2003) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348(22):2174–2185

    Article  Google Scholar 

  21. Volz T, Allweiss L, ḾBarek MB, Warlich M, Lohse AW, Pollok JM, Alexandrov A, Urban S, Petersen J, Lütgehetmann M, Dandri M (2013) The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol 58(5):861–867

    Article  CAS  PubMed  Google Scholar 

  22. Murota K, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417(1):12–17

    Article  CAS  PubMed  Google Scholar 

  23. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  Google Scholar 

  24. Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom WC (2007) The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat Res 631(2):111–123

    Article  CAS  PubMed  Google Scholar 

  25. Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouille Y, Seron K (2012) (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55(3):720–729

    Article  CAS  PubMed  Google Scholar 

  26. Haid S, Novodomska A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Chhatwal P, Jannack B, Hennebelle T, Bailleul F, Keppler OT, Poenisch M, Bartenschlager R, Hernandez C, Lemasson M, Rosenberg AR, Wong-Staal F, Davioud-Charvet E, Pietschmann T (2012) A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology 143(1):213e5–222e5

    Article  Google Scholar 

  27. Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM (2000) Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276(2):534–538

    Article  CAS  PubMed  Google Scholar 

  28. Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, AbuBakar S (2011) In vitro antiviral activity of Fisetin, Rutin and Naringenin against Dengue virus type-2. J Med Plants Res 5(23):5534–5539

    CAS  Google Scholar 

  29. Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, Abubakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, AbuBakar S (2012) Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Medicine 12(214):1–9

    Google Scholar 

  31. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42

    CAS  PubMed  Google Scholar 

  32. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41(Database issue):D475–D482

    CAS  PubMed  Google Scholar 

  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  34. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427

    Article  CAS  PubMed  Google Scholar 

  36. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0506s15

    Google Scholar 

  37. Laskowski AR (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  39. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics (Oxford, England) 16(6):566–567

    Article  CAS  Google Scholar 

  40. Weininger D (1988) SMILES, a chemical language and information system. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36

    Article  CAS  Google Scholar 

  41. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kubinyi H (2007) Hydrogen bonding: the last mystery in drug design? Pharmacokinet Optim Drug Res 30:513–524

    Google Scholar 

  43. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  PubMed  Google Scholar 

  44. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  46. Pol-Fachin L, Fernandes CL, Verli H (2009) GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res 344(4):491–500

    Article  CAS  PubMed  Google Scholar 

  47. Schuttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst D60:1355–1363

    Google Scholar 

  48. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  49. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  50. Zandi K, Lani R, Wong P-F, Teoh B-T, Sam S-S, Johari J, Mustafa MR, AbuBakar S (2012) Flavone enhances dengue virus type-2 (NGC strain) infectivity and replication in Vero cells. Molecules 17(3):2437–2445

    Article  CAS  PubMed  Google Scholar 

  51. Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79(2):1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr (2013) Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir Res 97(1):41–48

    Article  CAS  PubMed  Google Scholar 

  53. Hour MJ, Huang SH, Chang CY, Lin YK, Wang CY, Chang YS, Lin CW (2013) Baicalein, Ethyl Acetate, and Chloroform Extracts of Scutellaria baicalensis Inhibit the Neuraminidase Activity of Pandemic 2009 H1N1 and Seasonal Influenza A Viruses. Evid Based Complement Alternat Med 2013:750803

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kaul TN, Middleton E, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15(1):71–79

    Article  CAS  PubMed  Google Scholar 

  55. Abe T, Sando A, Teraoka F, Otsubo T, Morita K, Tokiwa H, Ikeda K, Suzuki T, Hidari KI (2014) Computational design of a sulfoglucuronide derivative fitting into a hydrophobic pocket of dengue virus E protein. Biochem Biophys Res Commun 449(1):32–37

    Article  CAS  PubMed  Google Scholar 

  56. Yennamalli R, Subbarao N, Kampmann T, McGeary RP, Young PR, Kobe B (2009) Identification of novel target sites and an inhibitor of the dengue virus E protein. J Comput Aided Mol Des 23(6):333–341

    Article  CAS  PubMed  Google Scholar 

  57. Degreve L, Fuzo CA (2013) Structure and dynamics of the monomer of protein E of dengue virus type 2 with unprotonated histidine residues. Genet Mol Res 12(1):348–359

    Article  CAS  PubMed  Google Scholar 

  58. Fuzo CA, Degrève L (2013) New pockets in dengue virus 2 surface identified by molecular dynamics simulation. J Mol Model 19(3):1369–1377

    Article  CAS  PubMed  Google Scholar 

  59. Ingolfsson HI, Thakur P, Herold KF, Hobart EA, Ramsey NB, Periole X, de Jong DH, Zwama M, Yilmaz D, Hall K, Maretzky T, Hemmings HC Jr, Blobel C, Marrink SJ, Kocer A, Sack JT, Andersen OS (2014) Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 9(8):1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ozlem Demir for the helpful discussion and careful reading of the manuscript. This research was supported by the Universiti Teknologi MARA (UiTM) Dana Cluster 600-RMI/DANA 5/3/CG (2/2012). NAI was funded by the scholarship from the Ministry of Higher Education (Malaysia) through the MyBrain15 program. We thank Faculty of Pharmacy, UiTM Puncak Alam Campus for providing the computing facilities in the Bioinformatics Lab, as well as Research Management Institute (RMI), UiTM and Ministry of Science and Technology Malaysia (MOSTI) for the financial and administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Azma Jusoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N.A., Jusoh, S.A. Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein. Interdiscip Sci Comput Life Sci 9, 499–511 (2017). https://doi.org/10.1007/s12539-016-0157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0157-8

Keywords

Navigation