Skip to main content
Log in

CFTR structure and function: is there a role in the kidney?

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    Article  PubMed  CAS  Google Scholar 

  • Aleksandrov L, Aleksandrov AA, Chang XB, Riordan JR (2002) The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J Biol Chem 277:15419–15425, doi:10.1074/jbc.M111713200

    Article  PubMed  CAS  Google Scholar 

  • Ames GF, Lecar H (1992) ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J 6:2660–2666

    PubMed  CAS  Google Scholar 

  • Azuma KK, Balkovetz DF, Magyar CE, Lescale-Matys L, Zhang Y, Chambrey R, Warnock DG, McDonough AA (1996) Renal Na+/H+ exchanger isoforms and their regulation by thyroid hormone. Am J Physiol 270:C585–C592

    PubMed  CAS  Google Scholar 

  • Barriere H, Tauc M, Poujeol P (2004) Use of knock-out mouse models for the study of renal ion channels. J Membr Biol 198:113–124, doi:10.1007/s00232-004-0665-z

    Article  PubMed  CAS  Google Scholar 

  • Basso C, Vergani P, Nairn AC, Gadsby DC (2003) Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. J Gen Physiol 122:333–348, doi:10.1085/jgp.200308798

    Article  PubMed  CAS  Google Scholar 

  • Bear CE, Li CH, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818, doi:10.1016/0092-8674(92)90155-6

    Article  PubMed  CAS  Google Scholar 

  • Birn H, Christensen EI (2006) Renal albumin absorption in physiology and pathology. Kidney Int 69:440–449, doi:10.1038/sj.ki.5000141

    Article  PubMed  CAS  Google Scholar 

  • Bradbury NA (1999) Intracellular CFTR: localization and function. Physiol Rev 79:S175–S191

    PubMed  CAS  Google Scholar 

  • Brenner BM, Rector FCJ (1991) Renal transport of glucose, amino acids, sodium, chloride and water. Brenner BM and Rector FCJ. 4(1):245–282. Philadelphia, Saunders. Ref Type: Serial (Book, Monograph)

  • Briel M, Greger R, Kunzelmann K (1998) Cl− transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. J Physiol 508(Pt 3):825–836

    Article  PubMed  CAS  Google Scholar 

  • Chen TY, Hwang TC (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88:351–387

    Article  PubMed  CAS  Google Scholar 

  • Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    PubMed  CAS  Google Scholar 

  • Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Riordan JR, Tsui LC (1990) The cystic fibrosis gene: isolation and significance. Hosp Pract (Off Ed) 25:47–57

    CAS  Google Scholar 

  • Coric T, Hernandez N, Alvarez DLR, Shao D, Wang T, Canessa CM (2004) Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 286:G663–G670

    Article  PubMed  CAS  Google Scholar 

  • Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci USA 88:9262–9266

    Article  PubMed  CAS  Google Scholar 

  • Cuffe JE, Bielfeld-Ackermann A, Thomas J, Leipziger J, Korbmacher C (2000) ATP stimulates Cl− secretion and reduces amiloride-sensitive Na+ absorption in M-1 mouse cortical collecting duct cells. J Physiol 524(Pt 1):77–90

    Article  PubMed  CAS  Google Scholar 

  • de Andrade Pinto AC, Barbosa CM, Ornellas DS, Novaira HJ, de Souza-Menezes J, Ortiga-Carvalho TM, Fong P, Morales MM (2007a) Thyroid hormones stimulate renal expression of CFTR. Cell Physiol Biochem 20:83–90

    PubMed  Google Scholar 

  • de Andrade Pinto AC, Barbosa CM, Ornellas DS, Novaira HJ, de Souza-Menezes J, Ortiga-Carvalho TM, Fong P, Morales MM (2007b) Thyroid hormones stimulate renal expression of CFTR. Cell Physiol Biochem 20:83–90

    PubMed  Google Scholar 

  • Deeley RG, Cole SP (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Devor DC, Pilewski JM (1999) UTP inhibits Na+ absorption in wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol 276:C827–C837

    PubMed  CAS  Google Scholar 

  • Devuyst O, Burrow CR, Schwiebert EM, Guggino WB, Wilson PD (1996) Developmental regulation of CFTR expression during human nephrogenesis. Am J Physiol 271:F723–F735

    PubMed  CAS  Google Scholar 

  • Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl− channel beta-subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  PubMed  CAS  Google Scholar 

  • Fuller CM, Benos DJ (1992) CFTR. Am J Physiol 263:C267–C286

    PubMed  CAS  Google Scholar 

  • Fulmer SB, Schwiebert EM, Morales MM, Guggino WB, Cutting GR (1995) Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci USA 92:6832–6836

    Article  PubMed  CAS  Google Scholar 

  • Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  • Giebisch G (1998) Renal potassium transport: mechanisms and regulation. Am J Physiol 274:F817–F833

    PubMed  CAS  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65:760–797

    Article  PubMed  CAS  Google Scholar 

  • Grotjohann I, Schulzke JD, Fromm M (1999) Electrogenic Na+ transport in rat late distal colon by natural and synthetic glucocorticosteroids. Am J Physiol 276:G491–G498

    PubMed  CAS  Google Scholar 

  • Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Physiol 246:F745–F756

    PubMed  CAS  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    Article  PubMed  CAS  Google Scholar 

  • Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293:381–399

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Inglis SK, Collett A, McAlroy HL, Wilson SM, Olver RE (1999) Effect of luminal nucleotides on Cl− secretion and Na+ absorption in distal bronchi. Pflugers Arch 438:621–627

    Article  PubMed  CAS  Google Scholar 

  • Iwase N, Sasaki T, Shimura S, Yamamoto M, Suzuki S, Shirato K (1997) ATP-induced Cl− secretion with suppressed Na+ absorption in rabbit tracheal epithelium. Respir Physiol 107:173–180

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ (1994) Structure and function of ClC chloride channels. Jpn J Physiol 44(Suppl 2):S1–S2

    PubMed  CAS  Google Scholar 

  • Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  • Jouret F, Devuyst O (2008) CFTR and defective endocytosis: new insights in the renal phenotype of cystic fibrosis. Pflugers Arch-Eur J Physiol. doi:10.1007/s00424-008-0594-2

  • Jouret F, Bernard A, Hermans C, Dom G, Terryn S, Leal T, Lebecque P, Cassiman JJ, Scholte BJ, de Jonge HR, Courtoy PJ, Devuyst O (2007) Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. J Am Soc Nephrol 18:707–718

    Article  PubMed  CAS  Google Scholar 

  • Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF (2001) Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9:571–586

    Article  PubMed  CAS  Google Scholar 

  • Katz AI, Emmanouel DS, Lindheimer MD (1975) Thyroid hormone and the kidney. Nephron 15:223–249

    Article  PubMed  CAS  Google Scholar 

  • Knowlton RG, Cohen-Haguenauer O, Van CN, Frezal J, Brown VA, Barker D, Braman JC, Schumm JW, Tsui LC, Buchwald M (1985) A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380–382

    Article  PubMed  CAS  Google Scholar 

  • Koenekoop RK (2003) The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet 24:75–80

    Article  PubMed  Google Scholar 

  • Kolovou GD, Mikhailidis DP, Anagnostopoulou KK, Daskalopoulou SS, Cokkinos DV (2006) Tangier disease four decades of research: a reflection of the importance of HDL. Curr Med Chem 13:771–782

    Article  PubMed  CAS  Google Scholar 

  • Konig J, Schreiber R, Voelcker T, Mall M, Kunzelmann K (2001) The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl− concentration. EMBO Rep 2:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Konstas AA, Koch JP, Korbmacher C (2003) cAMP-dependent activation of CFTR inhibits the epithelial sodium channel (ENaC) without affecting its surface expression. Pflugers Arch 445:513–521

    Article  PubMed  CAS  Google Scholar 

  • Kubitz R, Helmer A, Haussinger D (2005) Biliary transport systems: short-term regulation. Methods Enzymol 400:542–557

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K (2003) ENaC is inhibited by an increase in the intracellular Cl(−) concentration mediated through activation of Cl(−) channels. Pflugers Arch 445:504–512

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Schreiber R (1999) CFTR, a regulator of channels. J Membr Biol 168:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Schreiber R, Nitschke R, Mall M (2000) Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 440:193–201

    PubMed  CAS  Google Scholar 

  • Kunzelmann K, Schreiber R, Boucherot A (2001) Mechanisms of the inhibition of epithelial Na(+) channels by CFTR and purinergic stimulation. Kidney Int 60:455–461

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  CAS  Google Scholar 

  • Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340–343

    Article  PubMed  CAS  Google Scholar 

  • Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K (1998) The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 102:15–21

    Article  PubMed  CAS  Google Scholar 

  • McCoy DE, Taylor AL, Kudlow BA, Karlson K, Slattery MJ, Schwiebert LM, Schwiebert EM, Stanton BA (1999) Nucleotides regulate NaCl transport in mIMCD-K2 cells via P2X and P2Y purinergic receptors. Am J Physiol 277:F552–F559

    PubMed  CAS  Google Scholar 

  • McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088

    Article  PubMed  CAS  Google Scholar 

  • McNicholas CM, Nason MW Jr, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1997) A functional CFTR-NBF1 is required for ROMK2–CFTR interaction. Am J Physiol 273:F843–F848

    PubMed  CAS  Google Scholar 

  • Moestrup SK, Kozyraki R, Kristiansen M, Kaysen JH, Rasmussen HH, Brault D, Pontillon F, Goda FO, Christensen EI, Hammond TG, Verroust PJ (1998) The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J Biol Chem 273:5235–5242

    Article  PubMed  CAS  Google Scholar 

  • Moody JE, Thomas PJ (2005) Nucleotide binding domain interactions during the mechanochemical reaction cycle of ATP-binding cassette transporters. J Bioenerg Biomembr 37:475–479

    Article  PubMed  CAS  Google Scholar 

  • Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ (2002) Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277:21111–21114

    Article  PubMed  CAS  Google Scholar 

  • Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, Lopes AG, Stanton BA, Dietz HC, Cutting GR, Guggino WB (1996) Both the wild type and a functional isoform of CFTR are expressed in kidney. Am J Physiol 270:F1038–F1048

    PubMed  CAS  Google Scholar 

  • Morales MM, Capella MA, Lopes AG (1999) Structure and function of the cystic fibrosis transmembrane conductance regulator. Braz J Med Biol Res 32:1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Morales MM, Falkenstein D, Lopes AG (2000) The cystic fibrosis transmembrane regulator (CFTR) in the kidney. An Acad Bras Cienc 72:399–406

    PubMed  CAS  Google Scholar 

  • Morales MM, Nascimento DS, Capella MA, Lopes AG, Guggino WB (2001) Arginine vasopressin regulates CFTR and ClC-2 mRNA expression in rat kidney cortex and medulla. Pflugers Arch 443:202–211

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Schafer JA (2002) cAMP increases density of ENaC subunits in the apical membrane of MDCK cells in direct proportion to amiloride-sensitive Na(+) transport. J Gen Physiol 120:71–85

    Article  PubMed  CAS  Google Scholar 

  • Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, Poustka AM, Mandel JL, Aubourg P (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–730

    Article  PubMed  CAS  Google Scholar 

  • Novaira HJ, Ornellas DS, Ortiga-Carvalho TM, Zhang XM, Souza-Menezes J, Guggino SE, Guggino WB, Morales MM (2006) Atrial natriuretic peptide modulates cystic fibrosis transmembrane conductance regulator chloride channel expression in rat proximal colon and human intestinal epithelial cells. J Endocrinol 189:155–165

    Article  PubMed  CAS  Google Scholar 

  • Ornellas DS, Nascimento DS, Christoph DH, Guggino WB, Morales MM (2002) Aldosterone and high-NaCl diet modulate ClC-2 chloride channel gene expression in rat kidney. Pflugers Arch 444:193–201

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA (1998) Novel subunit composition of a renal epithelial KATP channel. J Biol Chem 273:14165–14171

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Uchida S, Kawasaki M, Adachi S, Marumo F (1994) ClC family in the kidney. Jpn J Physiol 44(Suppl 2):S3–S8

    PubMed  CAS  Google Scholar 

  • Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert EM, Kishore BK (2001) Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 280:F945–F963

    PubMed  CAS  Google Scholar 

  • Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB (1998) Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 95:2674–2679

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79:S145–S166

    PubMed  CAS  Google Scholar 

  • Shahrara S, Drvota V, Sylven C (1999) Organ specific expression of thyroid hormone receptor mRNA and protein in different human tissues. Biol Pharm Bull 22:1027–1033

    PubMed  CAS  Google Scholar 

  • Souza-Menezes J, Morales MM, Tukaye DN, Guggino SE, Guggino WB (2007) Absence of ClC5 in knockout mice leads to glycosuria, impaired renal glucose handling and low proximal tubule GLUT2 protein expression. Cell Physiol Biochem 20:455–464

    Article  PubMed  CAS  Google Scholar 

  • Souza-Menezes J, Tukaye DN, Novaira HJ, Guggino WB, Morales MM (2008) Small nuclear RNAs U11 and U12 modulate expression of TNR-CFTR mRNA in mammalian kidneys. Cell Physiol Biochem 22:93–100

    Article  PubMed  CAS  Google Scholar 

  • Stratford FL, Ramjeesingh M, Cheung JC, Huan LJ, Bear CE (2007) The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1–NBD2 heterodimer. Biochem J 401:581–586

    Article  PubMed  CAS  Google Scholar 

  • Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–850

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Yue Y, Foskett JK (1998) CFTR Cl− channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J 17:898–908

    Article  PubMed  CAS  Google Scholar 

  • Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426–429

    Article  PubMed  CAS  Google Scholar 

  • Valle D, Gartner J (1993) Human genetics. Penetrating the peroxisome. Nature 361:682–683

    CAS  Google Scholar 

  • Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433:876–880

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Wang W (1999) Regulation of the ROMK channel: interaction of the ROMK with associate proteins. Am J Physiol 277:F826–F831

    PubMed  CAS  Google Scholar 

  • Wang W, Hebert SC, Giebisch G (1997) Renal K+ channels: structure and function. Annu Rev Physiol 59:413–436

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Schafer JA (2004) Inhibition of ENaC by intracellular Cl− in an MDCK clone with high ENaC expression. Am J Physiol Renal Physiol 287:F722–F731

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Schafer JA (2008) Endogenous ATP release inhibits electrogenic Na(+) absorption and stimulates Cl (−) secretion in MDCK cells. Purinergic Signal 4:125–137

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by grants from Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazilian Minitery of Health, Financiadora de Estudos e Projetos (FINEP), and Programa de Apoio de aos Núcleos de Excelência (PRONEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza-Menezes, J., Morales, M.M. CFTR structure and function: is there a role in the kidney?. Biophys Rev 1, 3–12 (2009). https://doi.org/10.1007/s12551-008-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-008-0002-3

Keywords

Navigation