Skip to main content

Advertisement

Log in

A Data Augmentation Method for Estimating the Causal Effect of Adherence to Treatment Regimens Targeting Control of an Intermediate Measure

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

A dynamic treatment regimen is a rule or set of rules which define how a subject’s treatment at repeated visits depends on their evolving history of time-dependent covariates. In this manuscript we focus on regimens that are characterized by intermediate target ranges [b 1,b 2] which are used clinically to modify treatment such that longitudinal measures of the intermediate stay within a tolerance defined by [b 1,b 2]. For observational data, survival under a particular regimen can be consistently estimated by artificially censoring subjects when they become nonadherent to the regimen and then weighting subjects by the inverse probability of remaining uncensored. In many settings subjects are not identified at baseline as individuals who are following a pre-specified regimen. In addition, it may be possible for subjects to be adherent to multiple regimens at the same time. In order to compare alternative regimens we present a data augmentation methodology in which regimen membership is stochastically imputed multiple times and parameter estimates are aggregated to provide a final point estimate of a causal hazard ratio, and for which sandwich variance estimation methods provide consistent inference. The method is illustrated through simulation results as well as a preliminary analysis comparing epoetin therapy regimens with different target hemoglobin ranges in a cohort of hemodialysis subjects from the United States Renal Data System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA (2010) When to start treatment? A systematic approach to the comparison of dynamic regimes using observational data. Int J Biostat 6(2):18

    MathSciNet  Google Scholar 

  2. Cole S, Hernán M (2004) Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed 75:45–49

    Article  Google Scholar 

  3. Drüeke T, Locatelli F, Clyne N, Eckardt KU, Macdougall I, Tsakiris D, Burger HU, Scherhad A (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355(20):2071–2084

    Article  Google Scholar 

  4. Federal Drug Administration (2007) FDA strengthens safety information for erythropoiesis-stimulating agents (ESAs). URL http://www.fda.gov/bbs/topics/NEWS/2007/NEW01582.html. March 9, 2007

  5. Hernán M, Brumback B, Robins J (2000) Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11(5):561–570

    Article  Google Scholar 

  6. Hernán M, Brumback B, Robins J (2001) Marginal structural models to estimate the joint causal effect of nonrandomized treatments. J Am Stat Assoc 96(454):440–448

    Article  MATH  Google Scholar 

  7. Hernán M, Lanoy E, Costagliola D, Robins J (2006) Comparison of dynamic treatment regimes via inverse probability weighting. Basic Clin Pharmacol Toxicol 98:237–242

    Article  Google Scholar 

  8. Jones M, Ibels L, Schenkel B, Zagari M (2004) Impact of epoetin alfa on clinical end points in patients with chronic renal failure: a meta-analysis. Kidney Int 65:767–775

    Article  Google Scholar 

  9. Li S, Collins A (2004) Association of hematocrit value with cardiovascular morbidity and mortality in incident hemodialysis patients. Kidney Int 65:626–633

    Article  Google Scholar 

  10. Liang K, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22

    Article  MathSciNet  MATH  Google Scholar 

  11. Ofsthun N, Labrecque J, Lacson E, Keen M, Lazarus J (2003) The effects of higher hemoglobin levels on mortality and hospitalization in hemodialysis patients. Kidney Int 63:1908–1914

    Article  Google Scholar 

  12. Orellana L, Rotnitzky A, Robins JM (2010) Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes. Part I: Main content. Int J Biostat 6(2):8

    MathSciNet  Google Scholar 

  13. Pierce D (1982) The asymptotic effect of substituting estimators for parameters in certain types of statistics. Ann Stat 10(2):475–478

    Article  MathSciNet  MATH  Google Scholar 

  14. Robins J (1993) Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. In: Proceedings of the biopharmaceutical section, American statistical association. American Statistical Association, Alexandria, pp 24–33

    Google Scholar 

  15. Robins J (1998) Marginal structural models. In: 1997 Proceedings of the section on Bayesian statistical science. American Statistical Association, Alexandria, pp 1–10

    Google Scholar 

  16. Robins J (1999) Marginal structural models versus structural nested models as tools for causal inference. In: Halloran ME, Berry D (eds) Statistical models in epidemiology: the environment and clinical trials. Springer, New York, pp 95–134

    Google Scholar 

  17. Robins J, Finkelstein D (2000) Correcting for noncompliance and dependent censoring in an aids clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics 56(3):779–788

    Article  MATH  Google Scholar 

  18. Robins JM, Hernán MA (2009) Estimation of the causal effects of time-varying exposures. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds) Longitudinal data analysis. Chapman and Hall/CRC Press, New York, pp 553–599

    Google Scholar 

  19. Robins J, Hernán M, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11(5):550–560

    Article  Google Scholar 

  20. Robins J, Orellana L, Rotnitzky A (2008) Estimation and extrapolation of optimal treatment and testing strategies. Stat Med 27(23):4678–4721

    Article  MathSciNet  Google Scholar 

  21. Robins J, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewel N, Dietz K, Farewell V (eds) AIDS epidemiology—methodological issues, Proceedings of the American statistical association. American Statistical Association, Alexandria, p 2433

    Google Scholar 

  22. Robins J, Rotnitzky A, Zhao L (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc 90:106–121

    Article  MathSciNet  MATH  Google Scholar 

  23. Rubin D, Schenker N (1986) Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 81(394):366–374

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh A, Szczech L, Tang K, Barnhart H, Sapp S, Wolfson M, Reddan D (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355(20):2085–2098

    Article  Google Scholar 

  25. Zhang Y, Thamer M, Stefanik K, Kaufman J, Cotter D (2004) Epoetin requirements predict mortality in hemodialysis patients. Am J Kidney Dis 44(5):866–876

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia A. Cotton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotton, C.A., Heagerty, P.J. A Data Augmentation Method for Estimating the Causal Effect of Adherence to Treatment Regimens Targeting Control of an Intermediate Measure. Stat Biosci 3, 28–44 (2011). https://doi.org/10.1007/s12561-011-9038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-011-9038-1

Keywords

Navigation