Skip to main content

Advertisement

Log in

Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Apical periodontitis (AP) is a biofilm-associated disease initiated by the invasion of dental pulp by microorganisms from the oral cavity. Eradication of intracanal microbial infection is an important goal of endodontic treatment, and this is typically accomplished by mechanical instrumentation and application of sodium hypochlorite and chlorhexidine. However, these agents are tissue-irritating at higher concentrations and cytotoxic. Certain probiotics have been found effective in controlling marginal periodontitis, as evidenced by reduction of pathogenic bacterial loads, gains in clinical attachment levels, and reduced bleeding on probing. In vitro studies have shown inhibitory activity of some probiotics against endodontic pathogens. Similarly, in vivo studies in rats have demonstrated a positive immuno-modulatory role of probiotics in AP, as manifested by decreased levels of proinflammatory markers and increased levels of anti-inflammatory markers. A role for probiotics in effecting a reduction of bone resorption has also been reported. This review provides an outline of current research into the probiotic management of AP, with a focus on understanding the mechanisms of their direct antagonistic activity against target pathogens and of their beneficial modulation of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kakehashi S, Stanley HR, Fitzgerald RJ (1965) The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 20:340–349. https://doi.org/10.1016/0030-4220(65)90166-0

    Article  CAS  PubMed  Google Scholar 

  2. Abbott PV (2004) Classification, diagnosis and clinical manifestations of apical periodontitis. Endod Topics 8:36–54. https://doi.org/10.1111/j.1601-1546.2004.00098.x

    Article  Google Scholar 

  3. Xiong H, Wei L, Peng B (2019) The presence and involvement of interleukin-17 in apical periodontitis. Int Endod J 52:1128–1137. https://doi.org/10.1111/iej.13112

    Article  CAS  PubMed  Google Scholar 

  4. Jakovljevic A, Nikolic N, Jacimovic J, Pavlovic O, Milicic B, Beljic-Ivanovic K, Miletic M, Andric M, Milasin J (2020) Prevalence of apical periodontitis and conventional nonsurgical root canal treatment in general adult population: An updated systematic review and meta-analysis of cross-sectional studies published between 2012 and 2020. J Endod 46:1371–1186. https://doi.org/10.1016/j.joen.2020.07.007

    Article  PubMed  Google Scholar 

  5. Pak JG, Fayazi S, White SN (2012) Prevalence of periapical radiolucency and root canal treatment: a systematic review of cross-sectional studies. J Endod 38:1170–1176. https://doi.org/10.1016/j.joen.2012.05.023

    Article  PubMed  Google Scholar 

  6. Georgiou AC, Crielaard W, Armenis I, de Vries R, van der Waal SV (2019) Apical periodontitis is associated with elevated concentrations of inflammatory mediators in peripheral blood: a systematic review and meta-analysis. J Endod 45:1279–1295. https://doi.org/10.1016/j.joen.2020.07.007

    Article  PubMed  Google Scholar 

  7. Cotti E, Dessì C, Piras A, Flore G, Deidda M, Madeddu C, Zedda A, Longu G, Mercuro G (2011) Association of endodontic infection with detection of an initial lesion to the cardiovascular system. J Endod 37:1624–1629. https://doi.org/10.1016/j.joen.2011.09.006

    Article  PubMed  Google Scholar 

  8. Chauhan N, Mittal S, Tewari S, Sen J, Laller K (2019) Association of apical periodontitis with cardiovascular disease via noninvasive assessment of endothelial function and subclinical atherosclerosis. J Endod 45:681–690. https://doi.org/10.1016/j.joen.2019.03.003

    Article  PubMed  Google Scholar 

  9. Sánchez-Domínguez B, López-López J, Jané-Salas E, Castellanos- Cosano L, Velasco-Ortega E, Segura-Egea JJ (2015) Glycated haemoglobin levels and prevalence of apical periodontitis in type 2 diabetic patients. J Endod 41:601–606. https://doi.org/10.1016/j.joen.2014.12.024

    Article  PubMed  Google Scholar 

  10. Segura-Egea JJ, Martín-González J, Castellanos-Cosano L (2015) Endodontic medicine: connections between apical periodontitis and systemic diseases. Int Endod J 48:933–951. https://doi.org/10.1111/iej.12507

    Article  CAS  PubMed  Google Scholar 

  11. Harjunmaa U, Doyle R, Järnstedt J, Kamiza S, Jorgensen J, Stewart C, Shaw L, Hallamaa L, Ashorn U, Klein N, Dewey K, Maleta K, Ashorn P (2018) Periapical infection may affect birth outcomes via systemic inflammation. Oral Dis 24:847–855. https://doi.org/10.1111/odi.12817

    Article  CAS  PubMed  Google Scholar 

  12. Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K (2008) Outcome of primary root canal treatment: systematic review of the literature—part 2. Influence of clinical factors. Int Endod J 41:6–31. https://doi.org/10.1111/j.1365-2591.2007.01323.x

    Article  PubMed  Google Scholar 

  13. Kirkevang LL (2008) Root canal treatment and apical periodontitis: what can be learned from observational studies? Endod Topics 18:51–61. https://doi.org/10.1111/j.1601-1546.2011.00258.x

    Article  Google Scholar 

  14. Waltimo T, Trope M, Haapasalo M, Ørstavik D (2005) Clinical efficacy of treatment procedures in endodontic infection control and oneyear follow-up of periapical healing. J Endod 31:863–866. https://doi.org/10.1097/01.don.0000164856.27920.85

    Article  PubMed  Google Scholar 

  15. Swimberghe RCD, Coenye T, De Moor RJG, Meire MA (2019) Biofilm model systems for root canal disinfection: a literature review. Int Endod J 52:604–628. https://doi.org/10.1111/iej.13050

    Article  CAS  PubMed  Google Scholar 

  16. Siqueira JF, Rôças IN, Ricucci D, Hülsmann M (2014) Causes and management of post-treatment apical periodontitis. Br Dent J 216:305–312. https://doi.org/10.1038/sj.bdj.2014.200

    Article  PubMed  Google Scholar 

  17. Nair PNR (2006) On the causes of persistent apical periodontitis: a review. Int Endod J 39:249–281. https://doi.org/10.1111/j.1365-2591.2006.01099.x

    Article  CAS  PubMed  Google Scholar 

  18. Chow AT, Quah SY, Bergenholtz G, Lim KC, Yu VSH, Tan KS (2019) Bacterial species associated with persistent apical periodontitis exert differential effects on osteogenic differentiation. Int Endod J 52:201–210. https://doi.org/10.1111/iej.12994

    Article  CAS  PubMed  Google Scholar 

  19. Siqueira JF (2001) Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J 34:1–10. https://doi.org/10.1046/j.1365-2591.2001.00396.x

    Article  PubMed  Google Scholar 

  20. Siqueira JF, Rôças IN (2014) Present status and future directions in endodontic microbiology. Endod Topics 30:3–22. https://doi.org/10.1111/etp.12060

    Article  Google Scholar 

  21. Tay CX, Quah SY, Lui JN, Yu VSH, Tan KS (2015) Matrix metalloproteinase inhibitor as an antimicrobial agent to eradicate Enterococcus faecalis biofilm. J Endod 41:858–863. https://doi.org/10.1016/j.joen.2015.01.032

    Article  PubMed  Google Scholar 

  22. Haapasalo M, Udnaes T, Endal U (2003) Persistent, recurrent, and acquired infection of the root canal system post-treatment. Endod Topics 6:29–56. https://doi.org/10.1111/j.1601-1546.2003.00041.x

    Article  Google Scholar 

  23. Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62. https://doi.org/10.1016/j.ijmm.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  24. Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS (2016) Beneficial Properties of Probiotics. Trop Life Sci Res 27:73–90. https://doi.org/10.21315/tlsr2016.27.2.6

  25. Chidambaram SB, Tuladhar S, Bhat A, Mahalakshmi AM, Ray B, Essa MM, Bishir M, Bolla SR, Nanjaiah ND, Guillemin GJ, Qoronfleh MW (2020) Autism and gut-brain axis: role of probiotics. Adv Neurobiol 24:587–600. https://doi.org/10.1007/978-3-030-30402-7_21

    Article  PubMed  Google Scholar 

  26. Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43. https://doi.org/10.1016/j.neurobiolaging.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9:12. https://doi.org/10.1186/s13099-017-0162-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM (2017) Second era of OMICS in caries research: moving past the phase of disillusionment. J Dent Res 96:733–740. https://doi.org/10.1177/0022034517701902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosme-Silva L, Dal-Fabbro R, Cintra LTA, Santos VR, Duque C, Ervolino E, Mogami Bomfim S, Gomes-Filho JE (2019) Systemic administration of probiotics reduces the severity of apical periodontitis. Int Endod J 52:1738–1749. https://doi.org/10.1111/iej.13192

    Article  CAS  PubMed  Google Scholar 

  30. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Korpela R, Meurman JH (2001) Effect of long–term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35:412–420. https://doi.org/10.1159/000047484

    Article  PubMed  Google Scholar 

  31. Stecksén-Blicks C, Sjöström I, Twetman S (2009) Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res 43:374–381. https://doi.org/10.1159/000235581

    Article  CAS  PubMed  Google Scholar 

  32. Staab B, Eick S, Knöfler G, Jentsch H (2009) The influence of a probiotic milk drink on the development of gingivitis: a pilot study. J Clin Periodontol 36:850–856. https://doi.org/10.1111/j.1600-051X.2009.01459.x

    Article  PubMed  Google Scholar 

  33. Shimauchi H, Mayanagi G, Nakaya S, Minamibuchi M, Ito Y, Yamaki K, Hirata H (2008) Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. J Clin Periodontol 35:897–905. https://doi.org/10.1111/j.1600-051X.2008.01306.x

    Article  CAS  PubMed  Google Scholar 

  34. Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC (2013) Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol 40:1025–1035. https://doi.org/10.1111/jcpe.12155

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bohora A, Kokate S, Khedkar S, Vankudre A (2019) Antimicrobial activity of probiotics against endodontic pathogens: a preliminary study. Indian J Med Microbiol 37:5–11. https://doi.org/10.4103/ijmm.IJMM_18_333

    Article  PubMed  Google Scholar 

  36. Fouad AF (2017) Endodontic microbiology and pathobiology. Dent Clin North Am 61:1–15. https://doi.org/10.1016/j.cden.2016.08.001

    Article  PubMed  Google Scholar 

  37. Abusrewil S, Alshanta OA, Albashaireh K, Alqahtani S, Nile CJ, Scott JA, Mclean W (2020) Detection, treatment and prevention of endodontic biofilm infections: what’s new in 2020? Crit Rev Microbiol 46:194–212. https://doi.org/10.1080/1040841X.2020.1739622

    Article  CAS  PubMed  Google Scholar 

  38. Rôças IN, Neves MAS, Provenzano JC, Siqueira JF (2014) Susceptibility of as-yet-uncultivated and difficult-to-culture bacteria to chemomechanical procedures. J Endod 40:33–37. https://doi.org/10.1016/j.joen.2013.07.022

    Article  PubMed  Google Scholar 

  39. Taschieri S, Del Fabbro M, Samaranayake L, Chang JWW, Corbella S (2014) Microbial invasion of dentinal tubules: a literature review and a new perspective. J Investig Clin Dent 5:163–170. https://doi.org/10.1111/jicd.12109

    Article  PubMed  Google Scholar 

  40. Nair PNR (1987) Light and electron microscopic studies of root canal flora and periapical lesions. J Endod 13:29–39. https://doi.org/10.1016/S0099-2399(87)80089-4

    Article  Google Scholar 

  41. Molven O, Olsen I, Kerekes K (1991) Scanning electron microscopy of bacteria in the apical part of root canals in permanent teeth with periapical lesions. Endod Dent Traumatol 7:226–229. https://doi.org/10.1111/j.1600-9657.1991.tb00441.x

    Article  CAS  PubMed  Google Scholar 

  42. Ricucci D, Siqueira JF (2010) Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 36:1277–1288. https://doi.org/10.1016/j.joen.2010.04.007

    Article  PubMed  Google Scholar 

  43. Stuart C, Schwartz S, Beeson T, Owatz C (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98. https://doi.org/10.1016/j.joen.2005.10.049

    Article  PubMed  Google Scholar 

  44. Nair PNR (2004) Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med 15:348–381. https://doi.org/10.1177/154411130401500604

    Article  CAS  PubMed  Google Scholar 

  45. Mutoh N, Tani-Ishii N, Tsukinoki K, Chieda K, Watanabe K (2007) Expression of toll-like receptor 2 and 4 in dental pulp. J Endod 33:1183–1186. https://doi.org/10.1016/j.joen.2007.05.018

    Article  PubMed  Google Scholar 

  46. Diogenes A, Hargreaves KM (2017) Microbial modulation of stem cells and future directions in regenerative endodontics. J Endod 43:S95–S101. https://doi.org/10.1016/j.joen.2017.07.012

    Article  PubMed  Google Scholar 

  47. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. https://doi.org/10.1002/0471142735.im1412s109

    Article  CAS  PubMed  Google Scholar 

  48. Lukic A, Vasilijic S, Majstorovic I, Vucevic D, Mojsilovic S, Gazivoda D, Danilovic V, Petrovic R, Colic M (2006) Characterization of antigen-presenting cells in human apical periodontitis lesions by flow cytometry and immunocytochemistry. Int Endod J 39:626–636. https://doi.org/10.1111/j.1365-2591.2006.01125.x

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi SD, Malachowa N, DeLeo FR (2018) Neutrophils and bacterial immune evasion. J Innate Immun 10:432–441. https://doi.org/10.1159/000487756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Márton IJ, Kiss C (2014) Overlapping protective and destructive regulatory pathways in apical periodontitis. J Endod 40:155–163. https://doi.org/10.1016/j.joen.2013.10.036

    Article  PubMed  Google Scholar 

  51. Martinho FC, Chiesa WMM, Leite FRM, Cirelli JA, Gomes BPFA (2012) Correlation between clinical/radiographic features and inflammatory cytokine networks produced by macrophages stimulated with endodontic content. J Endod 38:740–745. https://doi.org/10.1016/j.joen.2012.02.021

    Article  PubMed  Google Scholar 

  52. Ferrer-Luque CM, Bejarano I, Ruiz-Linares M, Baca P (2014) Reduction in Enteroccocus faecalis counts—a comparison between rotary and reciprocating systems. Int Endod J 47:380–386. https://doi.org/10.1111/iej.12158

    Article  CAS  PubMed  Google Scholar 

  53. Siqueira JF Jr, Alves FR, Almeida BM, de Oliveira JC, Rôças IN (2010) Ability of chemomechanical preparation with either rotary instruments or self-adjusting file to disinfect oval-shaped root canals. J Endod 36:1860–1865. https://doi.org/10.1016/j.joen.2010.08.001

    Article  PubMed  Google Scholar 

  54. Basrani B, Haapasalo M (2012) Update on endodontic irrigating solutions. Endod Topics 27:74–102. https://doi.org/10.1111/etp.12031

    Article  Google Scholar 

  55. Verma N, Sangwan P, Tewari S, Duhan J (2019) Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: a randomized controlled trial. J Endod 45:357–363. https://doi.org/10.1016/j.joen.2019.01.003

    Article  PubMed  Google Scholar 

  56. Ulin C, Magunacelaya-Barria M, Dahlén G, Kvist T (2020) Immediate clinical and microbiological evaluation of the effectiveness of 0.5% versus 3% sodium hypochlorite in root canal treatment: a quasi-randomized controlled trial. Int Endod J 53:591–603. https://doi.org/10.1111/iej.13258

    Article  CAS  PubMed  Google Scholar 

  57. Mohammadi Z, Abbott PV (2009) The properties and applications of chlorhexidine in endodontics. Int Endod J 42:288–302. https://doi.org/10.1111/j.1365-2591.2008.01540.x

    Article  CAS  PubMed  Google Scholar 

  58. Zandi H, Rodrigues RCV, Kristoffersen AK, Enersen M, Mdala I, Ørstavik D, Rôças IN, Siqueira JF (2016) Antibacterial effectiveness of 2 root canal irrigants in root-filled teeth with infection: a randomized clinical trial. J Endod 42:1307–1313. https://doi.org/10.1016/j.joen.2016.06.006

    Article  PubMed  Google Scholar 

  59. Guivarc’h M, Ordioni U, Ahmed HMA, Cohen S, Catherine JH, Bukiet F (2017) Sodium hypochlorite accident: a systematic review. J Endod 43:16–24. https://doi.org/10.1016/j.joen.2016.09.023

    Article  PubMed  Google Scholar 

  60. Slaughter RJ, Watts M, Vale JA, Grieve JR, Schep LJ (2019) The clinical toxicology of sodium hypochlorite. Clin Toxicol 57:303–311. https://doi.org/10.1080/15563650.2018.1543889

    Article  CAS  Google Scholar 

  61. Bernardi A, Teixeira CS (2015) The properties of chlorhexidine and undesired effects of its use in endodontics. Quintessence Int 46:575–582. https://doi.org/10.3290/j.qi.a33934

    Article  PubMed  Google Scholar 

  62. Kuştarci A, Sümer Z, Altunbaş D, Koşum S (2009) Bactericidal effect of KTP laser irradiation against Enterococcus faecalis compared with gaseous ozone: an ex vivostudy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:e73–e79. https://doi.org/10.1016/j.tripleo.2009.01.048

    Article  PubMed  Google Scholar 

  63. Silva EJNL, Prado MC, Soares DN, Hecksher F, Martins JNR, Fidalgo TKS (2020) The effect of ozone therapy in root canal disinfection: a systematic review. Int Endod J 53:317–332. https://doi.org/10.1111/iej.13229

    Article  CAS  PubMed  Google Scholar 

  64. Plotino G, Grande NM, Mercade M (2019) Photodynamic therapy in endodontics. Int Endod J 52:760–774. https://doi.org/10.1111/iej.13057

    Article  CAS  PubMed  Google Scholar 

  65. Shrestha A, Kishen A (2016) Antibacterial nanoparticles in endodontics: a review. J Endod 42:1417–1426. https://doi.org/10.1016/j.joen.2016.05.021

    Article  PubMed  Google Scholar 

  66. Pan J, Sun K, Liang Y, Sun P, Yang X, Wang J, Zhang J, Zhu W, Fang J, Becker KH (2013) Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J Endod 39:105–110. https://doi.org/10.1016/j.joen.2012.08.017

    Article  PubMed  Google Scholar 

  67. Li Y, Sun K, Ye G, Liang Y, Pan H, Wang G, Zhao Y, Pan J, Zhang J, Fang J (2015) Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro. J Endod 41:1325–1330. https://doi.org/10.1016/j.joen.2014.10.020

    Article  PubMed  Google Scholar 

  68. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  69. Bustamante M, Oomah BD, Mosi-Roa Y, Rubilar M, Burgos-Díaz C (2020) Probiotics as an adjunct therapy for the treatment of halitosis, dental caries and periodontitis. Probiotics Antimicrob Proteins 12:325–334. https://doi.org/10.1007/s12602-019-9521-4

    Article  CAS  PubMed  Google Scholar 

  70. de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  71. Giraffa G, Chanishvili N, Widyastuti Y (2010) Importance of lactobacilli in food and feed biotechnology. Res Microbiol 161:480–487. https://doi.org/10.1016/j.resmic.2010.03.001

    Article  PubMed  Google Scholar 

  72. Gupta A, Tiwari SK (2015) Probiotic potential of bacteriocin-producing Enterococcus hirae strain LD3 isolated from dosa batter. Ann Microbiol 65:2333–2342. https://doi.org/10.1007/s13213-015-1075-4

    Article  CAS  Google Scholar 

  73. Plaza-Díaz J, Ruiz-Ojeda F, Vilchez-Padial L, Gil A (2017) Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9:555. https://doi.org/10.3390/nu9060555

    Article  CAS  PubMed Central  Google Scholar 

  74. Ferrarese R, Ceresola ER, Preti A, Canducci F (2018) Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Medical Pharmacol Sci 22:7588–7605. https://doi.org/10.26355/eurrev_201811_16301

  75. Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Springer, US, Boston, MA, pp 19–54

    Chapter  Google Scholar 

  76. Koll-Klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L, Mikelsaar M (2005) Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 20:354–361. https://doi.org/10.1111/j.1399-302X.2005.00239.x

    Article  CAS  PubMed  Google Scholar 

  77. Liong MT (2008) Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in vivo evidence. Int J Mol Sci 9:854–863. https://doi.org/10.3390/ijms9050854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev16:658-672. https://doi.org/10.1128/cmr.16.4.658-672.2003

  79. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular Mol Life Sci 74:3769–3787. https://doi.org/10.1007/s00018-017-2550-9

    Article  CAS  Google Scholar 

  80. Ahlawat S, Sharma A, Sharma KK (2020) Gut–organ axis: a microbial outreach and networking. Lett Appl Microbiol. https://doi.org/10.1111/lam.13333

    Article  PubMed  Google Scholar 

  81. Twetman S, Keller MK (2012) Probiotics for caries prevention and control. Adv Dent Res 24:98–102. https://doi.org/10.1177/0022034512449465

    Article  CAS  PubMed  Google Scholar 

  82. Javid ZA, Amerian E, Basir L, Ekrami A, Haghighizadeh MH, Maghsoumi-Norouzabad L (2020) Effects of the consumption of probiotic yogurt containing Bifidobacterium lactis Bb12 on the levels of Streptococcus mutans and lactobacilli in saliva of students with initial stages of dental caries: a double-blind randomized controlled trial. Caries Res 54:68–74. https://doi.org/10.1159/000504164

    Article  CAS  Google Scholar 

  83. Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490. https://doi.org/10.1038/nrmicro2337

    Article  CAS  PubMed  Google Scholar 

  84. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T (2017) Global epidemiology of dental caries and severe periodontitis—a comprehensive review. J Clin Periodontol 44:S94–S105. https://doi.org/10.1111/jcpe.12677

    Article  PubMed  Google Scholar 

  85. Zaura E, Twetman S (2019) Critical appraisal of oral pre- and probiotics for caries prevention and care. Caries Res 53:514–526. https://doi.org/10.1159/000499037

    Article  PubMed  Google Scholar 

  86. Aminabadi NA, Erfanparast L, Ebrahimi A, Oskouei SG (2011) Effect of chlorhexidine pretreatment on the stability of salivary lactobacilli probiotic in six- to twelve-year-old children: a randomized controlled trial. Caries Res 45:148–154. https://doi.org/10.1159/000325741

    Article  CAS  PubMed  Google Scholar 

  87. Juneja A, Kakade A (2012) Evaluating the effect of probiotic containing milk on salivary mutans streptococci levels. J Clin Pediatr Dent 37:9–14. https://doi.org/10.17796/jcpd.37.1.tq91178m7w876644

  88. Çaglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S (2007) Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig 11:425–429. https://doi.org/10.1007/s00784-007-0129-9

    Article  PubMed  Google Scholar 

  89. Chuang LC, Huang CS, Ou-Yang LW, Lin SY (2011) Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Investig 15:471–476. https://doi.org/10.1007/s00784-010-0423-9

    Article  PubMed  Google Scholar 

  90. Taipale T, Pienihäkkinen K, Salminen S, Jokela J, Söderling E (2012) Bifidobacterium animalis subsp. lactis BB-12 administration in early childhood: a randomized clinical trial of effects on oral colonization by mutans streptococci and the probiotic. Caries Res 46:69–77. https://doi.org/10.1159/000335567

    Article  CAS  PubMed  Google Scholar 

  91. Meurman J, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13:443–451. https://doi.org/10.1111/j.1601-0825.2007.01386.x

    Article  CAS  PubMed  Google Scholar 

  92. Könönen E, Gursoy M, Gursoy UK (2019) Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med 8:1135. https://doi.org/10.3390/jcm8081135

    Article  CAS  PubMed Central  Google Scholar 

  93. Twetman S, Derawi B, Keller M, Ekstrand K, Yucel-Lindberg T, Stecksén-Blicks C (2009) Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 67:19–24. https://doi.org/10.1080/00016350802516170

    Article  CAS  PubMed  Google Scholar 

  94. Shah PM, Gujjari SK, Chandrasekhar VS (2013) Evaluation of the effect of probiotic (inersan®) alone, combination of probiotic with doxycycline and doxycycline alone on aggressive periodontitis—a clinical and microbiological study. J Clin Diagn Res 7:595–600. https://doi.org/10.7860/JCDR/2013/5225.2834

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ricoldi MST, Furlaneto FAC, Oliveira LFF, Teixeira GC, Pischiotini JP, Moreira ALG, Ervolino E, de Oliveira MN, Bogsan CSB, Salvador SL, Messora MR (2017) Effects of the probiotic Bifidobacterium animalis subsp lactis on the non-surgical treatment of periodontitis A histomorphometric, microtomographic and immunohistochemical study in rats. PLoS ONE 12:e0179946. https://doi.org/10.1371/journal.pone.0179946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stamatova I, Meurman JH (2009) Probiotics and periodontal disease. Periodontology 2000(51):141–151. https://doi.org/10.1111/j.1600-0757.2009.00305.x

    Article  Google Scholar 

  97. Seminario-Amez M, Lopez-Lopez J, Estrugo-Devesa A, Ayuso-Montero R, Jane-Salas E (2017) Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal 22:e282-288. https://doi.org/10.4317/medoral.21494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ikram S, Hassan N, Raffat MA, Mirza S, Akram Z (2018) Systematic review and meta-analysis of double-blind, placebo-controlled, randomized clinical trials using probiotics in chronic periodontitis. J Investig Clin Dent 9:e12338. https://doi.org/10.1111/jicd.12338

    Article  PubMed  Google Scholar 

  99. Kang MS, Kim BG, Chung J, Lee HC, Oh JS (2006) Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J Clin Periodontol 33:226–232. https://doi.org/10.1111/j.1600-051X.2006.00893.x

    Article  CAS  PubMed  Google Scholar 

  100. Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T (2012) Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Arch Oral Biol 57:1041–1047. https://doi.org/10.1016/j.archoralbio.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  101. Tsubura S, Mizunuma H, Ishikawa S, Oyake I, Okabayashi M, Katoh K, Shibata M, Iizuka T, Toda T, Iizuka T (2009) The effect of Bacillus subtilis mouth rinsing in patients with periodontitis. Eur J Clin Microbiol Infect Dis 28:1353–1356. https://doi.org/10.1007/s10096-009-0790-9

    Article  CAS  PubMed  Google Scholar 

  102. Tsubura S, Waki Y, Tsubura T (2012) Probiotic effect of Bacillus subtilis tablets on periodontopathic oral bacteria. Microbiol Res 3:e23. https://doi.org/10.4081/mr.2012.e23

    Article  Google Scholar 

  103. Alkaya B, Laleman I, Keceli S, Ozcelik O, Cenk Haytac M, Teughels W (2017) Clinical effects of probiotics containing Bacillus species on gingivitis: a pilot randomized controlled trial. J Periodontal Res 52:497–504. https://doi.org/10.1111/jre.12415

    Article  CAS  PubMed  Google Scholar 

  104. Rotstein I, Simon JH (2006) The endo-perio lesion: a critical appraisal of the disease condition. Endod Topics 13:34–56. https://doi.org/10.1111/j.1601-1546.2006.00211.x

    Article  Google Scholar 

  105. Stassen IGK, Hommez GMG, De Bruyn H, De Moor RJG (2006) The relation between apical periodontitis and root-filled teeth in patients with periodontal treatment need. Int Endod J 39:299–308. https://doi.org/10.1111/j.1365-2591.2006.01098.x

    Article  CAS  PubMed  Google Scholar 

  106. Kumar G, Tewari S, Sangwan P, Tewari S, Duhan J, Mittal S (2020) The effect of an intraorifice barrier and base under the coronal restorations on the healing of apical periodontitis: a randomized controlled trial. Int Endod J 53:298–307. https://doi.org/10.1111/iej.13231

    Article  CAS  PubMed  Google Scholar 

  107. Bohora AA, Kokate SR (2017a) Evaluation of the role of probiotics in endodontic treatment: A preliminary study. J Int Soc Prev Community Dent 7:46–51. https://doi.org/10.4103/2231-0762.200710

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bohora AA, Kokate SR (2017b) Good bugs vs bad bugs: evaluation of inhibitory effect of selected probiotics against Enterococcus faecalis. J Contemp Dent Pract 18:312–316. https://doi.org/10.5005/jp-journals-10024-2037

    Article  PubMed  Google Scholar 

  109. Kim AR, Ahn KB, Yun CH, Park OJ, Perinpanayagam H, Yoo YJ, Kum KY, Han SH (2019) Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm. J Endod 45:310–315. https://doi.org/10.1016/j.joen.2018.12.007

    Article  PubMed  Google Scholar 

  110. Kim AR, Kang M, Yoo YJ, Yun CH, Perinpanayagam H, Kum KY, Han SH (2020) Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm. J Microbiol 58:314–319. https://doi.org/10.1007/s12275-020-9518-4

    Article  CAS  PubMed  Google Scholar 

  111. Jung S, Park O, Kim AR, Ahn KB, Lee D, Kum KY, Yun CH, Han SH (2019) Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J Microbiol 57:310–315. https://doi.org/10.1007/s12275-019-8538-4

    Article  CAS  PubMed  Google Scholar 

  112. Malagón-Rojas JN, Mantziari A, Salminen S, Szajewska H (2020) Postbiotics for preventing and treating common infectious diseases in children: a systematic review. Nutrients 12:389. https://doi.org/10.3390/nu12020389

    Article  CAS  PubMed Central  Google Scholar 

  113. Cosme-Silva L, Dal-Fabbro R, Cintra LTA, Ervolino E, Plazza F, Mogami Bomfim S, Duarte PCT, Junior VEDS, Gomes-Filho JE (2020) Reduced bone resorption and inflammation in apical periodontitis evoked by dietary supplementation with probiotics in rats. Int Endod J 53(8):1084–1092. https://doi.org/10.1111/iej.13311

    Article  CAS  PubMed  Google Scholar 

  114. Tiwari SK, Sutyak Noll K, Cavera VL, Chikindas ML (2015) Improved antimicrobial activities of synthetic-hybrid bacteriocins designed from enterocin E50–52 and pediocin PA-1. Appl Environ Microbiol 81:1661–1667. https://doi.org/10.1128/AEM.03477-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gupta A, Tiwari SK, Netrebov V, Chikindas ML (2016) Biochemical properties and mechanism of action of enterocin LD3 purified from Enterococcus hirae LD3. Probiotics Antimicrob Proteins 8:161–169. https://doi.org/10.1007/s12602-016-9217-y

    Article  CAS  PubMed  Google Scholar 

  116. Burton JP, Wescombe PA, Tagg JR, Chilcott CN (2006) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72:3050–3053. https://doi.org/10.1128/AEM.72.4.3050-3053.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Burton JP, Wescombe PA, Macklaim JM, Chai MHC, MacDonald K, Hale JDF, Tagg JR, Reid G, Gloor GB, Cadieux PA (2013) Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS ONE 8:e65991. https://doi.org/10.1371/journal.pone.0065991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iniesta M, Herrera D, Montero E, Zurbriggen M, Matos AR, Marín MJ, Sánchez-Beltrán MC, Llama-Palacio A, Sanz M (2012) Probiotic effects of orally administered Lactobacillus reuteri-containing tablets on the subgingival and salivary microbiota in patients with gingivitis. A randomized clinical trial. J Clin Periodontol 39:736–744. https://doi.org/10.1111/j.1600-051X.2012.01914.x

    Article  PubMed  Google Scholar 

  119. Schwendicke F, Korte F, Dörfer CE, Kneist S, Fawzy El-Sayed K, Paris S (2017) Inhibition of Streptococcus mutans growth and biofilm formation by probiotics in vitro. Caries Res 51:87–95. https://doi.org/10.1159/000452960

    Article  CAS  PubMed  Google Scholar 

  120. Reid G (2016) Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol 30:17–25. https://doi.org/10.1016/j.bpg.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  121. Gogineni KV, Morrow LE (2013) Probiotics: mechanisms of action and clinical applications. J Prob Health 1:101. https://doi.org/10.4172/jph.1000101

    Article  Google Scholar 

  122. Olsen I (2006) New principles in ecological regulation—features from the oral cavity. MicrobEcol Health Dis 18:26–31. https://doi.org/10.1080/08910600600761273

    Article  Google Scholar 

  123. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM (2018) Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 22:1972–1983. https://doi.org/10.1111/jcmm.13496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Graves DT, Oates T, Garlet GP (2011) Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol 3:5304. https://doi.org/10.3402/jom.v3i0.5304

    Article  Google Scholar 

  125. Bergandi L, Giuggia B, Alovisi M, Comba A, Silvagno F, Maule M, Aldieri E, Scotti N, Scacciatella P, Conrotto F, Berutti E, Pasqualini D (2019) Endothelial dysfunction marker variation in young adults with chronic apical periodontitis before and after endodontic treatment. J Endod 45:500–506. https://doi.org/10.1016/j.joen.2019.01.018

    Article  PubMed  Google Scholar 

  126. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jönsson LS, Latulippe ME, Marcos A, Moreines J, M’Rini C, Müller M, Pawelec G, van Neerven RJJ, Watzl B, Zhao J (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109:S1–S34. https://doi.org/10.1017/S0007114512005119

    Article  PubMed  Google Scholar 

  127. Lorea BM, Kirjavainen PV, Hekmat S, Reid G (2007) Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol 149:470–479. https://doi.org/10.1111/j.1365-2249.2007.03434.x

    Article  CAS  Google Scholar 

  128. Khaneghah MA, Abhari K, Eş I, Soares MB, Oliveira RBA, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS, (2020) Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Trends Food Sci Technol 95:205–218. https://doi.org/10.1016/j.tifs.2019.11.022

    Article  CAS  Google Scholar 

  129. Pahumunto N, Sophatha B, Piwat S, Teanpaisan R (2019) Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: a double-blind, randomized, controlled study. J Dent Sci 14:178–184. https://doi.org/10.1016/j.jds.2019.01.008=

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, Yu LL, Pistolic J, Falsafi R, Tagg JR, HancockRE, (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175. https://doi.org/10.1128/IAI.00188-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31. https://doi.org/10.1084/jem.20061303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jia W, Pua HH, Li QJ, He YW (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T Lymphocytes. J Immunol 186:1564–1574. https://doi.org/10.4049/jimmunol.1001822

    Article  CAS  PubMed  Google Scholar 

  133. Zhu L, Yang J, Zhang J, Peng B (2013) The presence of autophagy in human periapical lesions. J Endod 39:1379–1384. https://doi.org/10.1016/j.joen.2013.07.013

    Article  PubMed  Google Scholar 

  134. Han C, Ding Z, Shi H, Qian W, Hou X, Lin R (2016) The role of probiotics in lipopolysaccharide-induced autophagy in intestinal epithelial cells. Cell Physiol and Biochem 38:2464–2478. https://doi.org/10.1159/000445597

    Article  CAS  Google Scholar 

  135. Jäsberg H, Tervahartiala T, Sorsa T, Söderling E, Haukioja A (2018) Probiotic intervention influences the salivary levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in healthy adults. Arch Oral Biol 85:58–63. https://doi.org/10.1016/j.archoralbio.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  136. Matsui H, Yamasaki M, Nakata K, Amano K, Nakamura H (2011) Expression of MMP-8 and MMP-13 in the development of periradicular lesions: MMP-8 and MMP-13 in periradicular lesion. Int Endod J 44:739–745. https://doi.org/10.1111/j.1365-2591.2011.01880.x

    Article  CAS  PubMed  Google Scholar 

  137. Amin N, Boccardi V, Taghizadeh M, Jafarnejad S (2020) Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 32:363–371. https://doi.org/10.1007/s40520-019-01223-5

    Article  PubMed  Google Scholar 

  138. Gatej SM, Marino V, Bright R, Fitzsimmons TR, Gully N, Zilm P, Gibson RJ, Edwards S, Bartold PM (2018) Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol 45:204–212. https://doi.org/10.1111/jcpe.12838

    Article  CAS  PubMed  Google Scholar 

  139. Levi YLAS, Picchi RN, Silva EKT, Bremer Neto H, Prado RLD, Neves AP, Messora MR, Maia LP (2019) Probiotic administration increases mandibular bone mineral density on rats exposed to cigarette smoke inhalation. Braz Dent J 30:634–640. https://doi.org/10.1590/0103-6440201802862

    Article  PubMed  Google Scholar 

  140. Maekawa T, Hajishengallis G (2014) Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res 49:785–791. https://doi.org/10.1111/jre.12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moraes RM, Lescura CM, Milhan NVM, Ribeiro JL, Silva FA, Anbinder AL (2020) Live and heat-killed Lactobacillus reuteri reduce alveolar bone loss on induced periodontitis in rats. Arch Oral Biol Sep 8;119:104894. https://doi.org/10.1016/j.archoralbio.2020.104894

  142. Torabinejad M, Corr R, Handysides R, Shabahang S (2009) Outcomes of nonsurgical retreatment and endodontic surgery: a systematic review. J Endod 35:930–937. https://doi.org/10.1016/j.joen.2009.04.023

    Article  PubMed  Google Scholar 

  143. Riis A, Taschieri S, Del Fabbro M, Kvist T (2018) Tooth survival after surgical or nonsurgical endodontic retreatment: long-term follow-up of a randomized clinical trial. J Endod 44:1480–1486. https://doi.org/10.1016/j.joen.2018.06.019

    Article  PubMed  Google Scholar 

  144. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T (2016) Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 69:187–203. https://doi.org/10.1136/jclinpath-2015-202976

    Article  PubMed  Google Scholar 

  145. Boyle RJ, Robins-Browne RM, Tang ML (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83:1256–1264. https://doi.org/10.1093/ajcn/83.6.1256

    Article  CAS  PubMed  Google Scholar 

  146. Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M (2014) A systematic review of the safety of probiotics. Expert Opin Drug Saf 13:227–239. https://doi.org/10.1517/14740338.2014.872627

    Article  PubMed  Google Scholar 

  147. Cassone M, Serra P, Mondello F, Girolamo A, Scafetti S, Pistella E, Venditti M (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii Fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41(11):5340–5343. https://doi.org/10.1128/jcm.41.11.5340-5343.2003

    Article  PubMed  PubMed Central  Google Scholar 

  148. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60:S129–S134. https://doi.org/10.1093/cid/civ085

    Article  PubMed  PubMed Central  Google Scholar 

  149. Siqueira JF, Rôças IN, Favieri A, Lima K (2000) Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod 26:331–334. https://doi.org/10.1097/00004770-200006000-00006

    Article  PubMed  Google Scholar 

  150. Zhang C, Du J, Peng Z (2015) Correlation between Enterococcus faecalis and persistent intraradicular infection compared with primary intraradicular infection: a systematic review. J Endod 41:1207–1213. https://doi.org/10.1016/j.joen.2015.04.008

    Article  PubMed  Google Scholar 

  151. Shin JM, Luo T, Lee KH, Guerreiro D, Botero TM, McDonald NJ, Rickard AH (2018) Deciphering endodontic microbial communities by next-generation sequencing. J Endod 44:1080–1087. https://doi.org/10.1016/j.joen.2018.04.003

    Article  PubMed  Google Scholar 

  152. Gu W, Miller S, Chiu CY (2019) Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol 14:319–338. https://doi.org/10.1146/annurev-pathmechdis-012418-012751

    Article  CAS  PubMed  Google Scholar 

  153. Tzanetakis GN, Azcarate-Peril MA, Zachaki PP, Kontakiotis EG, Madianos PN, Divaris K (2005) Comparison of bacterial community composition of primary and persistent endodontic infections using pyrosequencing. J Endod 41:1226–1233. https://doi.org/10.1016/j.joen.2015.03.010

    Article  Google Scholar 

  154. Hong BY, Lee TK, Lim SM, Chang SW, Park J, Han SH, Zhu Q, Safavi KE, Fouad AF, Kum KY (2013) Microbial analysis in primary and persistent endodontic infections by using pyrosequencing. J Endod 39:1136–1140. https://doi.org/10.1016/j.joen.2013.05.001

    Article  PubMed  Google Scholar 

  155. Siqueira JF, Antunes HS, Rôças IN, Rachid CTCC (2016) Alves FRF (2016) Microbiome in the apical root canal system of teeth with post-treatment apical periodontitis. PLoS ONE 11:e0162887. https://doi.org/10.1371/journal.pone.0162887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pham LC, van Spanning RJM, Röling WFM, Prosperi AC, Terefework Z, ten Cate JM, Crielaard W, Zaura E (2009) Effects of probiotic Lactobacillus salivarius W24 on the compositional stability of oral microbial communities. Arch Oral Biol 54:132–137. https://doi.org/10.1016/j.archoralbio.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  157. Škrlec K, Ručman R, Jarc E, Sikirić P, Švajger U, Petan T, Perišić Nanut M, Štrukelj B, Berlec A (2018) Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities. Appl Microbiol Biotechnol 102:10103–10117. https://doi.org/10.1007/s00253-018-9333-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

MLC and IVP were supported by the Ministry of Science and Higher Education of the Russian Federation (Project Number 075-15-2019-1880). SKT received financial supports from the Department of Biotechnology (BT/PR8306/PID/6/738/2013) and Indian Council of Medical Research (5/9/1117/2013-NUT), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Tiwari.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Tewari, S., Tagg, J. et al. Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review. Probiotics & Antimicro. Prot. 13, 299–314 (2021). https://doi.org/10.1007/s12602-021-09750-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09750-2

Keywords

Navigation