Skip to main content
Log in

Efficacité de trois larvicides d’origine biologique et d’un régulateur de croissance contre Anopheles arabiensis au Sénégal

Effectiveness of three biological larvicides and of an insect growth regulator against Anopheles arabiensis in Senegal

  • Entomologie Médicale / Medical Entomology
  • Published:
Bulletin de la Société de pathologie exotique

Résumé

Le paludisme urbain est considéré comme un problème majeur en Afrique. Au Sénégal, les modifications environnementales semblent favoriser la persistance de la transmission du paludisme dans la banlieue de Dakar par la création, tout au long de l’année, de potentiels gîtes larvaires de moustiques vecteurs de Plasmodium. Face à cette situation et dans un contexte de généralisation de la résistance des vecteurs aux insecticides, la lutte antilarvaire (LAL) usant notamment des produits d’origine biologique ou des régulateurs de croissance pourrait constituer une mesure complémentaire aux stratégies actuelles de lutte contre les anophèles vecteurs. Cette étude réalisée en 2012 vise à mesurer l’efficacité et l’effet résiduel de trois larvicides d’origine biologique (VectoBac® WG, VectoBac® GR et VectoMax® CG) et d’un régulateur de croissance (MetaLarv™) sur les larves d’Anopheles gambiae s.l. en conditions semi-naturelles (station expérimentale) et naturelles, dans des gîtes larvaires de la banlieue de Dakar. Les formulations ont été testées selon les doses recommandées par le fabricant (0,03 g/m2 pour VectoBac® WG, 0,5 g/m2 pour VectoBac® GR, 0,75 g/m2 pour VectoMax® CG et 0,5 g/m2 pour MetaLarv™). En station expérimentale, le traitement par larvicides a été efficace sur une période de 14 jours avec une mortalité variant entre 92 et 100 %. Malgré une seule émergence notée au 27e jour après traitement, le régulateur de croissance est resté efficace jusqu’à 55 jours. En conditions naturelles, l’efficacité des larvicides a été totale à 48 heures après le traitement. Audelà, une recolonisation progressive des gîtes a été notée. Par contre, le régulateur de croissance a réduit l’émergence des adultes de plus de 80 % jusqu’à la fin du suivi (j28). Cette étude a montré une bonne efficacité des larvicides et du régulateur de croissance. Ces travaux fournissent des données à jour sur de potentiels candidats pour la mise en oeuvre d’interventions de LAL en complément de celle imagocide chimique pour un contrôle du paludisme urbain.

Abstract

Urban malaria is a major public health problem in Africa. In Senegal, the environmental changes seem to favor the persistence of malaria transmission in Dakar suburbs by creating, throughout the year, potential breeding sites of malaria vectors. In such a situation and in a context of a growing threat of insecticide resistance in anopheline vectors, the larval control making use of products from biological origin or growth regulators could represent an additional tool to the current strategies developed against anophelines. In this study conducted in 2012, the efficiency and residual effect of three biological larvicides (VectoBac® WG, Vecto-Max® CG, and VectoBac® GR) and an insect growth regulator (MetaLarv™) were evaluated on Anopheles gambiae s.l. larvae in seminatural conditions (experimental station) and natural breeding sites in the suburbs of Dakar. The formulations were tested according to the manufacturer recommendations, namely 0.03 g/m2 for VectoBac® WG, 0.5 g/m2 for VectoBac® GR, 0.75 g/m2 for VectoMax® CG, and 0.5 g/m2 for MetaLarv™. In experimental station, the treatment with larvicides was effective over a period of 14 days with a mortality ranging between 92% and 100%. The insect growth regulator remained effective up to 55 days with a single emergence recorded in the 27th day after treatment. In natural conditions, a total effectiveness (100% mortality) of larvicides was obtained 48 hours after treatment, then a gradual recolonization of breeding sites was noted. However, the insect growth regulator has reduced adult emergence higher than 80% until the end of follow-up (J28). This study showed a good efficiency of the larvicides and of the growth regulator tested. These works provide current data on potential candidates for the implementation of larval control interventions in addition to that of chemical adulticide for control of urban malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Adak T, Mittal PK, Raghavendra K, et al (1995) Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823. Curr Sci 69:695–8

    Google Scholar 

  2. ANAMS (2013) Agence nationale de la météorologie, ANAMS, Sénégal

    Google Scholar 

  3. Anderson JF, Ferrandino FJ, Dingman DW, et al (2011) Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. J Am Mosq Control Assoc 27:45–55

    Article  PubMed  Google Scholar 

  4. ANSD (2013) Rapport définitif — Recensement général de la population et de l’habitat, de l’agriculture et de l’élevage — Agence nationale de la statistique et de la démographie, 417 p

    Google Scholar 

  5. Baruah I, Das SC (1996) Evaluation of methoprene (Altosid) and diflubenzuron (Dimilin) for control of mosquito breeding in Tezpur (Assam). Indian J Malariol 33:61–6

    CAS  PubMed  Google Scholar 

  6. Becker N (2010) The Rhine Larviciding Program and its application to vector control Springer. Vector Biology, Ecology and Control, pp 209–19

    Google Scholar 

  7. Becker N, Ludwig M, Beck M, Zgomba M (1993) The impact of environmental factors on the efficacy of Bacillus sphaericus against Culex pipiens. Bull Soc Vector Ecol 18:61–6

    Google Scholar 

  8. Bhatt S, Weiss DJ, Cameron E, et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlson DB (2006) Source reduction in Florida’s salt marshes: management to reduce pesticide use and enhance the resource. J Am Mosq Control Assoc 22:534–7

    Article  PubMed  Google Scholar 

  10. Cetin H, Oz E, Yanikoglu A, Cilek JE (2015) Operational evaluation of VectoMax® WSP (Bacillus thuringiensis Subsp. Israelensis+ Bacillus sphaericus) Against Larval Culex pipiens in Septic Tanks (1). J Am Mosq Control Assoc 31:193–5

    Article  PubMed  Google Scholar 

  11. Christiansen JA, McAbee RD, Stanich MA, et al (2004) Influence of temperature and concentration of VectoBac® on control of the salt-marsh mosquito, Ochlerotatus squamiger, inMonterey County, California. J Am Mosq Control Assoc 20:165–70

    PubMed  Google Scholar 

  12. Dambach P, Louis VR, Kaiser A, et al (2014) Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in northwestern Burkina Faso. Parasit Vectors 7:371

    Article  PubMed  PubMed Central  Google Scholar 

  13. Darabi H, Vatandoost H, Abaei MR, et al (2011) Effectiveness of methoprene, an insect growth regulator, against malaria vectors in fars, Iran: a field study. Pak J Biol Sci 14: 69–73

    Article  CAS  PubMed  Google Scholar 

  14. Diagne N, Fontenille D, Konate L, et al (1994) Les anophèles du Sénégal. Liste commentée et illustrée. Bull Soc Pathol Exot 87:267–77 [http://www.pathexo.fr/documents/articles-bull/Bull- SocPatholExot-1994-87-4-267-277.pdf]

    CAS  Google Scholar 

  15. Diallo A, Ndam NT, Moussiliou A, et al (2012) Asymptomatic carriage of plasmodium in urban Dakar: the risk of malaria should not be underestimated. PloS one 7:e31100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djenontin A, Pennetier C, Zogo B, et al (2014) Field efficacy of VectoBac® GR as a mosquito larvicide for the control of anopheline and culicine mosquitoes in natural habitats in Benin, West Africa. PloS one 9:e87934

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donnelly MJ, McCall PJ, Lengeler C, et al (2005) Malaria and urbanization in sub-Saharan Africa. Malaria J 4:12

    Article  Google Scholar 

  18. Dritz DA, Lawler SP, Evkhanian C, et al (2011) Control of mosquito larvae in seasonal wetlands on a wildlife refuge using VectoMax ® CG. J Am Mosq Control Assoc 27:398–403

    Article  PubMed  Google Scholar 

  19. Fillinger U, Knols BG, Becker N (2003) Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health 8:37–47

    Article  PubMed  Google Scholar 

  20. Fillinger U, Lindsay SW (2011) Larval source management for malaria control in Africa: myths and reality. Malaria J 10:353

    Article  Google Scholar 

  21. Gadawski R (1989) Annual report on mosquito surveillance and control in Winnipeg. Insect Control Branch, Parks & Recreation Department, Winnipeg

    Google Scholar 

  22. Haq S, Bhatt RM, Vaishnav KG, Yadav RS (2004) Field evaluation of biolarvicides in Surat city, India. J Vector Borne Dis 41:61–6

    CAS  PubMed  Google Scholar 

  23. Karch S, Manzambi ZA, Salaun JJ (1991) Field trials with Vectolex (Bacillus sphaericus) and Vectobac (Bacillus thuringiensis (H-14)) against Anopheles gambiae and Culex quinquefasciatus breeding in Zaire. J Am Mosq Control Assoc 7:176–9

    CAS  PubMed  Google Scholar 

  24. Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–63

    Article  CAS  PubMed  Google Scholar 

  25. Lacoursière JO, Boisvert J (2004) Le Bacillus thuringiensis et le contrôle des insectes piqueurs au Québec. Ministère de l’Environnement, Québec, 101 p

    Google Scholar 

  26. Lindsay SW (2011) Larval source management work streamupdate and plans, report of the 6th annual meeting of The Roll Back Malaria Partnership Vector Control Working Group, Geneva, 43 p

    Google Scholar 

  27. Majambere S, Lindsay SW, Green C, et al (2007) Microbial larvicides for malaria control in The Gambia. Malaria J 6:76

    Article  Google Scholar 

  28. Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vector Borne Dis 40:20–32

    CAS  PubMed  Google Scholar 

  29. Mittal PK, Adak T, Sharma VP (1998) Variations in the response to Bacillus sphaericus toxins in different strains of Anopheles stephensi Liston. Indian J Malariol 35:178–84

    CAS  PubMed  Google Scholar 

  30. Mulla MS, Federici BA, Darwazeh HA, Ede L (1982) Field evaluation of the microbial insecticide Bacillus thuringiensis serotype H-14 against floodwater mosquitoes. Appl Environ Microbiol 43:1288–93

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nartey R, Owusu-Dabo E, Kruppa T, et al (2013) Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana. Parasit Vectors 6:116

    Article  PubMed  PubMed Central  Google Scholar 

  32. OMS (1983) Lutte antivectorielle intégrée. Organisation mondiale de la santé (OMS), Genève, 84 p

    Google Scholar 

  33. OMS (1982) Lutte biologique contre les vecteurs de maladies. Organisation mondiale de la santé (OMS), Genève, 48 p

    Google Scholar 

  34. PNLP (2013) Rapport statistique (2010–2013). Programme national de lutte contre le paludisme, PNLP, Sénégal, 33 p

    Google Scholar 

  35. Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–61

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Romi R, Ravoniharimelina B, Ramiakajato M, Majori G (1993) Field trials of Bacillus thuringiensis H-14 and Bacillus sphaericus (strain 2362) formulations against Anopheles arabiensis in the central highlands of Madagascar. J Am Mosq Control Assoc 9:325–9

    CAS  PubMed  Google Scholar 

  37. Seyoum A, Abate D (1997) Larvicidal efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on Anopheles arabiensis in Ethiopia. World J Microbiol Biotechnol 13:21–4

    Article  Google Scholar 

  38. Shililu JI, Tewolde GM, Brantly E, et al (2003) Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. J Am Mosq Control Assoc 19:251–8

    CAS  PubMed  Google Scholar 

  39. Skovmand O, Sanogo E (1999) Experimental formulations of Bacillus sphaericus and Bacillus thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J Med Entomol 36:62–7

    Article  CAS  PubMed  Google Scholar 

  40. Su T, Mulla MS (1999) Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J Am Mosq Control Assoc 15:356–65

    CAS  PubMed  Google Scholar 

  41. Trape JF (1986) L’impact de l’urbanisation sur le paludisme en Afrique centrale. Thèse d’État (Sciences), université de Pans-Sud, Centre d’Orsay

    Google Scholar 

  42. WHO (2014) Global Malaria Program, World malaria report. World Health Organization, Geneva, 242 p

    Google Scholar 

  43. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, Geneva, 39 p

    Google Scholar 

  44. WHO (2013) Larval source management, a supplementary measure for malaria vector control, an operational manual. World Health Organization, Geneva, 128 p

    Google Scholar 

  45. WHO (2015) World malaria report. World Health Organization, Switzerland, Geneva, 280 p

    Google Scholar 

  46. Wilkins EE, Howell PI, Benedict MQ (2006) IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malaria J 5:125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Diédhiou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diédhiou, S.M., Konaté, L., Doucouré, S. et al. Efficacité de trois larvicides d’origine biologique et d’un régulateur de croissance contre Anopheles arabiensis au Sénégal. Bull. Soc. Pathol. Exot. 110, 102–115 (2017). https://doi.org/10.1007/s13149-016-0531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13149-016-0531-4

Mots clés

Keywords

Navigation