Skip to main content
Log in

Radiolabeled chitosan hydrogel containing VEGF enhances angiogenesis in a rodent model of acute myocardial infarction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis in an infarcted myocardium. The purpose of the current investigation was to validate whether a radiolabeled VEGF delivery system can be effectively monitored in vivo, and to ascertain whether the growth factor induces an angiogenic effect to facilitate recovery from infarct conditions in rodent myocardial infarction (MI) models. Rat MI models were divided into three groups, one with left anterior descending coronary artery (LAD) ligation with no injection (the control group), one with LAD ligation and I-131 VEGF injection (the VEGF group), and one with LAD ligation and I-131 VEGF-loaded chitosan injection (the VIC group). On day 7 after injection, autoradiography imaging was performed, followed by semiquantitative and histopathologic analyses. In semi-quantitative analysis, the mean anterior-to-inferior wall ratio of the VIC group was significantly higher than those of the control and VEGF groups (p<0.05). Histopathologic experiments revealed a marked increase in microvascular density in the VIC group compared to those of the control and VEGF groups (p<0.05). Intramyocardially injected VIC was not only effectively monitored in vivo, but also stimulated therapeutic angiogenesis in the infarcted myocardium. Our findings support that the developed VIC is a novel theranostic tool to improve myocardial perfusion following myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fukuda, S. Yoshii, S. Kaga, M. Matsumoto, K. Kugiyama, and N. Maulik, Mol. Cell. Biochem., 264, 143 (2004).

    Article  CAS  Google Scholar 

  2. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, Nature, 407, 242 (2000).

    Article  CAS  Google Scholar 

  3. K. Harada, M. Friedman, J. J. Lopez, S. Y. Wang, J. Li, P. V. Prasad, J. D. Pearlman, E. R. Edelman, F. W. Sellke, and M. Simons, Am. J. Physiol., 270, H1791 (1996).

    CAS  Google Scholar 

  4. T. D. Henry, B. H. Annex, G. R. McKendall, M. A. Azrin, J. J. Lopez, F. J. Giordano, P. K. Shah, J. T. Willerson, R. L. Benza, D. S. Berman, C. M. Gibson, A. Bajamonde, A. C. Rundle, J. Fine, and E. R. McCluskey, Circulation, 107, 1359 (2003).

    Article  CAS  Google Scholar 

  5. G. C. Hughes, S. S. Biswas, B. Yin, R. E. Coleman, T. R. DeGrado, C. K. Landolfo, J. E. Lowe, B. H. Annex, and K. P. Landolfo, Ann. Thorac. Surg., 77, 812 (2004).

    Article  Google Scholar 

  6. M. D. Hariawala, J. R. Horowitz, D. Esakof, D. D. Sheriff, D. H. Walter, B. Keyt, J. M. Isner, and J. F. Symes, J. Surg. Res., 63, 77 (1996).

    Article  CAS  Google Scholar 

  7. R. J. Lee, M. L. Springer, W. E. Blanco-Bose, R. Shaw, P. C. Ursell, and H. M. Blau, Circulation, 102, 898 (2000).

    Article  CAS  Google Scholar 

  8. R. Yang, G. R. Thomas, S. Bunting, A. Ko, N. Ferrara, B. Keyt, J. Ross, and H. Jin, J. Cardiovasc. Pharmacol., 27, 838 (1996).

    Article  CAS  Google Scholar 

  9. T. Kean and M. Thanou, Adv. Drug Deliv. Rev., 62, 3 (2010).

    Article  CAS  Google Scholar 

  10. J. J. Wang, Z. W. Zeng, R. Z. Xiao, T. Xie, G. L. Zhou, X. R. Zhan, and S. L. Wang, Int. J. Nanomedicine, 6, 765 (2011).

    CAS  Google Scholar 

  11. C. Kuntner, T. Wanek, M. Hoffer, D. Dangl, M. Hornof, H. Kvaternik, and O. Langer, Mol. Imaging Biol., 13, 222 (2011).

    Article  Google Scholar 

  12. L. D. D’Andrea, A. Del Gatto, L. De Rosa, A. Romanelli, and C. Pedone, Curr. Pharm. Design, 15, 2414 (2009).

    Article  Google Scholar 

  13. S. B. Freedman and J. M. Isner, Ann. Intern. Med., 136, 54 (2002).

    Article  Google Scholar 

  14. A. Helisch and W. Schaper, Z. Kardiol., 89, 239 (2000).

    Article  CAS  Google Scholar 

  15. R. Kornowski, S. Fuchs, M. B. Leon, and S. E. Epstein, Circulation, 101, 454 (2000).

    Article  CAS  Google Scholar 

  16. R. J. Laham, L. Garcia, D. S. Baim, M. Post, and M. Simons, Curr. Interv. Cardiol. Rep., 1, 228 (1999).

    Google Scholar 

  17. Y. S. Yoon, I. A. Johnson, J. S. Park, L. Diaz, and D. W. Losordo, Mol. Cell. Biochem., 264, 63 (2004).

    Article  CAS  Google Scholar 

  18. J. S. Kwon, I. K. Park, A. S. Cho, S. M. Shin, M. H. Hong, S. Y. Jeong, Y. S. Kim, J. J. Min, M. H. Jeong, W. J. Kim, S. Jo, S. H. Pun, J. G. Cho, J. C. Park, J. C. Kang, and Y. Ahn, J. Control. Release, 138, 168 (2009).

    Article  CAS  Google Scholar 

  19. E. A. Silva and D. J. Mooney, J. Thromb. Haemost., 5, 590 (2007).

    Article  CAS  Google Scholar 

  20. J. Wu, F. Zeng, X. P. Huang, J. C. Chung, F. Konecny, R. D. Weisel, and R. K. Li, Biomaterials, 32, 579 (2011).

    Article  CAS  Google Scholar 

  21. J. Zhang, L. Ding, Y. Zhao, W. Sun, B. Chen, H. Lin, X. Wang, L. Zhang, B. Xu, and J. Dai, Circulation, 119, 1776 (2009).

    Article  CAS  Google Scholar 

  22. F. Q. Hu, X. L. Wu, Y. Z. Du, J. You, and H. Yuan, Eur. J. Pharm. Biopharm., 69, 117 (2008).

    Article  CAS  Google Scholar 

  23. C. M. Lee, D. Jang, J. Kim, S. J. Cheong, E. M. Kim, M. H. Jeong, S. H. Kim, D. W. Kim, S. T. Lim, M. H. Sohn, Y. Y. Jeong, and H. J. Jeong, Bioconjug. Chem., 22, 186 (2011).

    Article  CAS  Google Scholar 

  24. J. Zhang, X. G. Chen, W. B. Peng, and C. S. Liu, Nanomedicine, 4, 208 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Jeong Jeong.

Additional information

Dr. Kim and Dr. Lee equally contributed in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DW., Lee, CM., Kim, NH. et al. Radiolabeled chitosan hydrogel containing VEGF enhances angiogenesis in a rodent model of acute myocardial infarction. Macromol. Res. 22, 272–278 (2014). https://doi.org/10.1007/s13233-014-2036-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2036-7

Keywords

Navigation