Skip to main content

Advertisement

Log in

Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip® device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip® implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip® implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that are currently critical for Mitraclip® implantation, helping the search for possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abbott Laboratories. Electronic instructions for use for the MitraClip(R) clip delivery system. http://www.abbottvascular.com/static/cms_workspace/pdf/ifu/structural_heart/eIFU_MitraClip.pdf. 2014. Accessed 12 June 2014.

  2. Adams, D. H., A. C. Anyanwu, P. B. Rahmanian, and F. Filsoufi. Current concepts in mitral valve repair for degenerative disease. Heart Fail. Rev. 11(3):241–257, 2006. doi:10.1007/s10741-006-0103-7.

    Article  Google Scholar 

  3. Al-Atassi, T., T. Malas, T. Mesana, and V. Chan. Mitral valve interventions in heart failure. Curr. Opin. Cardiol. 29(2):192–197, 2014.

    Article  Google Scholar 

  4. Alfieri, O., and M. De Bonis. The role of the edge-to-edge repair in the surgical treatment of mitral regurgitation. J. Card. Surg. 25(5):536–541, 2010.

    Article  Google Scholar 

  5. Alfieri, O., F. Maisano, M. De Bonis, P. L. Stefano, L. Torracca, M. Oppizzi, et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J. Thorac. Cardiovasc. Surg. 122(4):674–681, 2001.

    Article  Google Scholar 

  6. Alfieri, O., J. A. Elefteriades, R. J. Chapolini, R. Steckel, W. J. Allen, S. W. Reed, et al. Novel suture device for beating-heart mitral leaflet approximation. Ann. Thorac. Surg. 74(5):1488–1493, 2002.

    Article  Google Scholar 

  7. Avanzini, A., G. Donzella, and L. Libretti. Functional and structural effects of percutaneous edge-to-edge double-orifice repair under cardiac cycle in comparison with suture repair. Proc. Inst. Mech. Eng. H. 225(10):959–971, 2011.

    Article  Google Scholar 

  8. Bhudia, S. K., P. M. McCarthy, N. G. Smedira, B. K. Lam, J. Rajeswaran, and E. H. Blackstone. Edge-to-edge (Alfieri) mitral repair: results in diverse clinical settings. Ann. Thorac. Surg. 77(5):1598–1606, 2004.

    Article  Google Scholar 

  9. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. De Leon, Jr., D. P. Faxon, M. D. Freed, et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 118(15):26, 2008.

    Google Scholar 

  10. Braun, D., H. Lesevic, M. Orban, F. Michalk, P. Barthel, K. Hoppe, et al. Percutaneous edge-to-edge repair of the mitral valve in patients with degenerative versus functional mitral regurgitation. Catheter. Cardiovasc. Interv. 84(1):137–146, 2014. doi:10.1002/ccd.25331.

    Article  Google Scholar 

  11. Braunberger, E., A. Deloche, A. Berrebi, F. Abdallah, J. A. Celestin, P. Meimoun, et al. Very long-term results (more than 20 years) of valve repair with carpenter’s techniques in nonrheumatic mitral valve insufficiency. Circulation. 104(12 Suppl 1):I8–I11, 2001.

    Google Scholar 

  12. Choi, A., Y. Rim, J. S. Mun, and H. Kim. A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Biomed. Mater. Eng. 24(1):341–347, 2014. doi:10.3233/bme-130816.

    Google Scholar 

  13. Croft, L. R., J. H. Jimenez, R. C. Gorman, J. H. Gorman, 3rd, and A. P. Yoganathan. Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: an in vitro study. Ann. Thorac. Surg. 84(5):1578–1584, 2007. doi:10.1016/j.athoracsur.2007.05.086.

    Article  Google Scholar 

  14. Dal Pan, F., G. Donzella, C. Fucci, and M. Schreiber. Structural effects of an innovative surgical technique to repair heart valve defects. J. Biomech. 38(12):2460–2471, 2005. doi:10.1016/j.jbiomech.2004.10.005.

    Article  Google Scholar 

  15. Denti, P., F. Maisano, and O. Alfieri. Devices for mitral valve repair. J. Cardiovasc. Transl. Res. 7(3):266–281, 2014.

    Article  Google Scholar 

  16. Dimasi, A., E. Cattarinuzzi, M. Stevanella, C. Conti, E. Votta, F. Maffessanti, et al. Influence of mitral valve anterior leaflet in vivo shape on left ventricular ejection. Cardiovasc. Eng. Technol. 3(4):388–401, 2012. doi:10.1007/s13239-012-0105-7.

    Article  Google Scholar 

  17. Du, D., S. Jiang, Z. Wang, Y. Hu, and Z. He. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair. Biomed. Mater. Eng. 24(1):155–161, 2014. doi:10.3233/bme-130795.

    Google Scholar 

  18. Ducas, R. A., C. W. White, A. W. Wassef, A. Farag, K. M. Bhagirath, D. H. Freed, et al. Functional mitral regurgitation: current understanding and approach to management. Can. J. Cardiol. 30(2):173–180, 2014.

    Article  Google Scholar 

  19. Falk, V., J. Seeburger, M. Czesla, M. A. Borger, J. Willige, T. Kuntze, et al. How does the use of polytetrafluoroethylene neochordae for posterior mitral valve prolapse (loop technique) compare with leaflet resection? A prospective randomized trial. J. Thorac. Cardiovasc. Surg. 136(5):1205, 2008. doi:10.1016/j.jtcvs.2008.07.028; discussion-6.

    Article  Google Scholar 

  20. Feldman, T., and A. Young. Percutaneous approaches to valve repair for mitral regurgitation. J. Am. Coll. Cardiol. 63(20):2057–2068, 2014. doi:10.1016/j.jacc.2014.01.039.

    Article  Google Scholar 

  21. Feldman, T., S. Kar, M. Rinaldi, P. Fail, J. Hermiller, R. Smalling, et al. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J. Am. Coll. Cardiol. 54(8):686–694, 2009. doi:10.1016/j.jacc.2009.03.077.

    Article  Google Scholar 

  22. Feldman, T., E. Foster, D. D. Glower, S. Kar, M. J. Rinaldi, P. S. Fail, et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364(15):1395–1406, 2011. doi:10.1056/NEJMoa1009355.

    Article  Google Scholar 

  23. Filsoufi, F., and A. Carpentier. Principles of reconstructive surgery in degenerative mitral valve disease. Semin. Thorac. Cardiovasc. Surg. 19(2):103–110, 2007.

    Article  Google Scholar 

  24. Fucci, C., L. Sandrelli, A. Pardini, L. Torracca, M. Ferrari, and O. Alfieri. Improved results with mitral valve repair using new surgical techniques. Eur. J. Cardiothorac. Surg. 9(11):621–626, 1995.

    Article  Google Scholar 

  25. Gould, S. T., S. Srigunapalan, C. A. Simmons, and K. S. Anseth. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113(2):186–197, 2013. doi:10.1161/circresaha.112.300154.

    Article  Google Scholar 

  26. Grande-Allen, K. J., B. P. Griffin, N. B. Ratliff, D. M. Cosgrove, and I. Vesely. Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. J. Am. Coll. Cardiol. 42(2):271–277, 2003.

    Article  Google Scholar 

  27. Hasegawa, H., Y. Araki, A. Usui, J. Yokote, S. Saito, H. Oshima, et al. Mitral valve motion after performing an edge-to-edge repair in an isolated swine heart. J. Thorac. Cardiovasc. Surg. 136(3):590–596, 2008. doi:10.1016/j.jtcvs.2008.03.050.

    Article  Google Scholar 

  28. He, Z., B. Gao, S. Bhattacharya, T. Harrist, S. Mathew, and W. Sun. In vitro stretches of the mitral valve anterior leaflet under edge-to-edge repair condition. J. Biomech. Eng. 131(11):111012, 2009. doi:10.1115/1.4000111.

    Article  Google Scholar 

  29. Hilberath, J. N., H. K. Eltzschig, S. K. Shernan, A. H. Worthington, S. F. Aranki, and M. Nowak-Machen. Intraoperative evaluation of transmitral pressure gradients after edge-to-edge mitral valve repair. Plos One. 8(9):e73617, 2013. doi:10.1371/journal.pone.0073617.

    Article  Google Scholar 

  30. Hu, Y., L. Shi, S. Parameswaran, S. Smirnov, and Z. He. Left ventricular vortex under mitral valve edge-to-edge repair. Cardiovasc. Eng. Technol. 1(4):235–243, 2010. doi:10.1007/s13239-010-0022-6.

    Article  Google Scholar 

  31. Huang, H. Y., J. Liao, and M. S. Sacks. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129(6):880–889, 2007.

    Article  Google Scholar 

  32. Jimenez, J. H., J. Forbess, L. R. Croft, L. Small, Z. He, and A. P. Yoganathan. Effects of annular size, transmitral pressure, and mitral flow rate on the edge-to-edge repair: an in vitro study. Ann. Thorac. Surg. 82(4):1362–1368, 2006. doi:10.1016/j.athoracsur.2006.05.008.

    Article  Google Scholar 

  33. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26(1):224–238, 1995.

    Article  Google Scholar 

  34. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, et al. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295(3):H1141–H1149, 2008.

    Article  Google Scholar 

  35. Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, et al. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42(16):2697–2701, 2009. doi:10.1016/j.jbiomech.2009.08.028.

    Article  Google Scholar 

  36. Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298(6):H2221–H2225, 2010. doi:10.1152/ajpheart.00215.2010.

    Article  Google Scholar 

  37. Kunzelman, K. S., and R. P. Cochran. Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Trans. 36(3):M405–M408, 1990.

    Google Scholar 

  38. Kunzelman, K. S., R. P. Cochran, C. Chuong, W. S. Ring, E. D. Verrier, and R. D. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3):326–340, 1993.

    Google Scholar 

  39. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1):108–116, 1998.

    Google Scholar 

  40. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1393–1406, 2007. doi:10.1098/rstb.2007.2123.

    Article  Google Scholar 

  41. Ladich, E., M. B. Michaels, R. M. Jones, E. McDermott, L. Coleman, J. Komtebedde, et al. Pathological healing response of explanted MitraClip devices. Circulation. 123(13):1418–1427, 2011. doi:10.1161/circulationaha.110.978130.

    Article  Google Scholar 

  42. Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation. 41(3):449–458, 1970.

    Article  Google Scholar 

  43. Latif, N., P. Sarathchandra, P. M. Taylor, J. Antoniw, and M. H. Yacoub. Molecules mediating cell–ECM and cell–cell communication in human heart valves. Cell Biochem. Biophys. 43(2):275–287, 2005. doi:10.1385/cbb:43:2:275.

    Article  Google Scholar 

  44. Lau, K. D., V. Diaz-Zuccarini, P. Scambler, and G. Burriesci. Fluid-structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44(13):2409–2417, 2011. doi:10.1016/j.jbiomech.2011.06.030.

    Article  Google Scholar 

  45. Lee, C. H., R. Amini, R. C. Gorman, J. H. Gorman, 3rd, and M. S. Sacks. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in vivo valvular biomaterial assessment. J. Biomech. 47(9):2055–2063, 2014. doi:10.1016/j.jbiomech.2013.10.058.

    Article  Google Scholar 

  46. Luk, A., J. Butany, E. Ahn, J. I. Fann, F. St Goar, T. Thornton, et al. Mitral repair with the Evalve MitraClip device: histopathologic findings in the porcine model. Cardiovasc. Pathol. 18(5):279–285, 2009. doi:10.1016/j.carpath.2008.07.001.

    Article  Google Scholar 

  47. Maisano, F., L. Torracca, M. Oppizzi, P. L. Stefano, G. D’Addario, G. La Canna, et al. The edge-to-edge technique: a simplified method to correct mitral insufficiency. Eur. J. Cardiothorac. Surg. 13(3):240–245, 1998.

    Article  Google Scholar 

  48. Maisano, F., A. Redaelli, G. Pennati, R. Fumero, L. Torracca, and O. Alfieri. The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model. Eur. J. Cardiothorac. Surg. 15(4):419–425, 1999.

    Article  Google Scholar 

  49. Maisano, F., J. J. Schreuder, M. Oppizzi, B. Fiorani, C. Fino, and O. Alfieri. The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique. Eur. J. Cardiothorac. Surg. 17(3):201–205, 2000.

    Article  Google Scholar 

  50. Maisano, F., A. Caldarola, A. Blasio, M. De Bonis, G. La Canna, and O. Alfieri. Midterm results of edge-to-edge mitral valve repair without annuloplasty. J. Thorac. Cardiovasc. Surg. 126(6):1987–1997, 2003.

    Article  Google Scholar 

  51. Maisano, F., G. La Canna, A. Colombo, and O. Alfieri. The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique. J. Am. Coll. Cardiol. 58(21):2174–2182, 2011.

    Article  Google Scholar 

  52. Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7):1330–1346, 2012. doi:10.1016/j.media.2012.05.009.

    Article  Google Scholar 

  53. Matsumaru, I., K. Eishi, K. Hashizume, H. Kawano, A. Tsuneto, and T. Hayashi. Clinical and pathological features of degenerative mitral valve disease: billowing mitral leaflet versus fibroelastic deficiency. Ann. Thorac. Cardiovasc. Surg. 27:27, 2013.

    Google Scholar 

  54. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Article  Google Scholar 

  55. Morales, D. L., J. D. Madigan, A. F. Choudhri, M. R. Williams, D. N. Helman, J. B. Elder, et al. Development of an off bypass mitral valve repair. Heart Surg. Forum. 2(2):115–120, 1999.

    Google Scholar 

  56. Naqvi, T. Z., M. Buchbinder, D. Zarbatany, J. Logan, M. Molloy, G. Balke, et al. Beating-heart percutaneous mitral valve repair using a transcatheter endovascular suturing device in an animal model. Catheter. Cardiovasc. Interv. 69(4):525–531, 2007. doi:10.1002/ccd.21029.

    Article  Google Scholar 

  57. Nielsen, S. L., T. A. Timek, D. T. Lai, G. T. Daughters, D. Liang, J. M. Hasenkam, et al. Edge-to-edge mitral repair: tension on the approximating suture and leaflet deformation during acute ischemic mitral regurgitation in the ovine heart. Circulation. 104(12 Suppl 1):I29–I35, 2001.

    Google Scholar 

  58. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368(9540):1005–1011, 2006.

    Article  Google Scholar 

  59. Pham, T., and W. Sun. Material properties of aged human mitral valve leaflets. J. Biomed. Mater. Res. A. 102(8):2692–2703, 2014. doi:10.1002/jbm.a.34939.

    Article  Google Scholar 

  60. Rabbah, J. P., A. W. Siefert, E. M. Spinner, N. Saikrishnan, and A. P. Yoganathan. Peak mechanical loads induced in the in vitro edge-to-edge repair of posterior leaflet flail. Ann. Thorac. Surg. 94(5):1446–1453, 2012. doi:10.1016/j.athoracsur.2012.05.024.

    Article  Google Scholar 

  61. Reichenspurner, H., W. Schillinger, S. Baldus, J. Hausleiter, C. Butter, U. Schaefer, et al. Clinical outcomes through 12 months in patients with degenerative mitral regurgitation treated with the MitraClip(R) device in the ACCESS-EUrope Phase I trial. Eur. J. Cardiothorac. Surg. 44(4):e280–e288, 2013. doi:10.1093/ejcts/ezt321.

    Article  Google Scholar 

  62. Reimink, M. S., K. S. Kunzelman, and R. P. Cochran. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J. Heart Valve Dis. 5(4):365–375, 1996.

    Google Scholar 

  63. Rim, Y., S. T. Laing, D. D. McPherson, and H. Kim. Mitral valve repair using ePTFE sutures for ruptured mitral chordae tendineae: a computational simulation study. Ann. Biomed. Eng. 42(1):139–148, 2014.

    Article  Google Scholar 

  64. Siefert, A. W., J. P. Rabbah, E. L. Pierce, K. S. Kunzelman, and A. P. Yoganathan. Quantitative evaluation of annuloplasty on mitral valve chordae tendineae forces to supplement surgical planning model development. Cardiovasc. Eng. Technol. 5(1):35–43, 2014. doi:10.1007/s13239-014-0175-9.

    Article  Google Scholar 

  65. Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10(1):11–26, 2011. doi:10.1007/s10237-010-0215-9.

    Article  Google Scholar 

  66. Solomon, N. A., S. K. Pranav, D. Naik, and S. Sukumaran. Importance of preservation of chordal apparatus in mitral valve replacement. Expert. Rev. Cardiovasc. Ther. 4(2):253–261, 2006. doi:10.1586/14779072.4.2.253.

    Article  Google Scholar 

  67. Stevanella, M., E. Votta, and A. Redaelli. Mitral valve finite element modeling: implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. 131(12):4000107, 2009.

    Article  Google Scholar 

  68. Stevanella, M., F. Maffessanti, C. Conti, E. Votta, A. Arnoldi, M. Lombardi, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2(2):66–76, 2011. doi:10.1007/s13239-010-0032-4.

    Article  Google Scholar 

  69. Stevanella, M., G. Krishnamurthy, E. Votta, J. C. Swanson, A. Redaelli, and N. B. Ingels, Jr. Mitral leaflet modeling: importance of in vivo shape and material properties. J. Biomech. 44(12):2229–2235, 2011.

    Article  Google Scholar 

  70. Sturla, F., F. Onorati, E. Votta, K. Pechlivanidis, M. Stevanella, A. D. Milano, et al. Is it possible to assess the best mitral valve repair in the individual patient? Preliminary results of a finite element study from magnetic resonance imaging data. J. Thorac. Cardiovasc. Surg. 148(3):1025–1034, 2014. doi:10.1016/j.jtcvs.2014.05.071; discussion 34.

    Article  Google Scholar 

  71. Swanson, J. C., G. Krishnamurthy, A. Itoh, J. P. Kvitting, W. Bothe, D. Craig Miller, et al. Multiple mitral leaflet contractile systems in the beating heart. J. Biomech. 44(7):1328–1333, 2011. doi:10.1016/j.jbiomech.2011.01.006.

    Article  Google Scholar 

  72. Tan, H., S. Biechler, L. Junor, M. J. Yost, D. Dean, J. Li, et al. Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. Dev. Biol. 374(2):345–356, 2013. doi:10.1016/j.ydbio.2012.11.023.

    Article  Google Scholar 

  73. Taramasso, M., P. Denti, N. Buzzatti, M. De Bonis, G. La Canna, A. Colombo, et al. Mitraclip therapy and surgical mitral repair in patients with moderate to severe left ventricular failure causing functional mitral regurgitation: a single-centre experience. Eur. J. Cardiothorac. Surg. 42(6):920–926, 2012. doi:10.1093/ejcts/ezs294.

    Article  Google Scholar 

  74. Thayer, P., K. Balachandran, S. Rathan, C. H. Yap, S. Arjunon, H. Jo, et al. The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype. Ann. Biomed. Eng. 39(6):1654–1667, 2011.

    Article  Google Scholar 

  75. Timek, T. A., S. L. Nielsen, D. Liang, D. T. Lai, P. Dagum, G. T. Daughters, et al. Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation. Eur. J. Cardiothorac. Surg. 19(4):431–437, 2001.

    Article  Google Scholar 

  76. Timek, T. A., S. L. Nielsen, D. T. Lai, F. A. Tibayan, D. Liang, F. Rodriguez, et al. Edge-to-edge mitral valve repair without ring annuloplasty for acute ischemic mitral regurgitation. Circulation. 108(Suppl 1):II122–II127, 2003. doi:10.1161/01.cir.0000087943.76135.fd.

    Google Scholar 

  77. Timek, T. A., S. L. Nielsen, D. T. Lai, F. Tibayan, D. Liang, G. T. Daughters, et al. Mitral annular size predicts Alfieri stitch tension in mitral edge-to-edge repair. J. Heart Valve Dis. 13(2):165–173, 2004.

    Google Scholar 

  78. Vahanian, A., O. Alfieri, F. Andreotti, M. J. Antunes, G. Baron-Esquivias, H. Baumgartner, et al. Guidelines on the management of valvular heart disease (version 2012). The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). G. Ital. Cardiol. 14(3):167–214, 2013.

    Google Scholar 

  79. Votta, E., F. Maisano, M. Soncini, A. Redaelli, F. M. Montevecchi, and O. Alfieri. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11(6):810–822, 2002.

    Google Scholar 

  80. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84(1):92–101, 2007. doi:10.1016/j.athoracsur.2007.03.040.

    Article  Google Scholar 

  81. Votta, E., T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, et al. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2):217–228, 2013.

    Article  Google Scholar 

  82. Webb, J. G., F. Maisano, A. Vahanian, B. Munt, T. Z. Naqvi, R. Bonan, et al. Percutaneous suture edge-to-edge repair of the mitral valve. EuroIntervention 5(1):86–89, 2009.

    Article  Google Scholar 

  83. Whitlow, P. L., T. Feldman, W. R. Pedersen, D. S. Lim, R. Kipperman, R. Smalling, et al. Acute and 12-month results with catheter-based mitral valve leaflet repair: the EVEREST II (Endovascular Valve Edge-to-Edge Repair) High Risk Study. J. Am. Coll. Cardiol. 59(2):130–139, 2012. doi:10.1016/j.jacc.2011.08.067.

    Article  Google Scholar 

Download references

Conflict of interest

All of the authors declare that they do not have any conflict of interest and financial and personal relationships with other people or organizations that could inappropriately influence their work.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Statement of Human Studies

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Votta.

Additional information

Associate Editor Karyn Kunzelman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturla, F., Redaelli, A., Puppini, G. et al. Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation. Cardiovasc Eng Tech 6, 117–140 (2015). https://doi.org/10.1007/s13239-014-0208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0208-4

Keywords

Navigation