Skip to main content

Advertisement

Log in

Estimation of Biomechanical Properties of Normal and Atherosclerotic Common Carotid Arteries

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

We developed a modified Kelvin model so that the periodic changes of the arterial intima–media thickness (IMT) over the cardiac cycle were involved. Modified model was implemented for carotid artery, solved via a parameter optimization technique and biomechanical parameters of the model.

Methods

Consecutive ultrasonic images of the common carotid artery of 30 male patients including 10 healthy subjects, 10 subjects with mild and 10 subjects with sever stenosis were recorded and processed offline. Temporal changes of the internal diameter and IMT were extracted using a combined maximum gradient and dynamic programming algorithm. The blood pressure waveforms were deduced calibrating the internal diameter waveforms using an empirical exponential relationship.

Results

According to the results of the ANOVA statistical analysis, mean values of the zero pressure radiuses, stress relaxation times, elastic moduli and strain relaxation times of the common carotid arteries of three groups were significantly different. Mentioned parameters increased 11, 24, 7 and 6% in patients with mild (< 50%) stenosis and 12, 73, 8 and 61% in the group with sever stenosis (> 50%) relative to healthy group.

Conclusion

Present study can be an indicative of the general state of the vascular system and be used for discriminating atherosclerotic from healthy arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Armentano, R. L., S. Graf, J. G. Barra, G. Velikovsky, H. Baglivo, R. Sánchez, A. Simon, R. H. Pichel, and J. Levenson. Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertension 31(1 Pt 2):534–539, 1998.

    Article  Google Scholar 

  2. Audet, C., and J. E. Denid. Analysis of generalized pattern searches. SIMA J. Optim. 13(3):889–903, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  3. Balocco, S., O. Basset, G. Courbebaisse, E. Boni, A. F. Frangi, P. Tortoli, and C. Cachard. Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound. Phys. Med. Biol. 55(12):355–375, 2010.

    Article  Google Scholar 

  4. Balocco, S., O. Basset, G. Courbebaisse, E. Boni, P. Tortoli, and C. Cachard. Noninvasive Young’s modulus evaluation of tissues surrounding pulsatile vessels using ultrasound Doppler measurement. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6):1265–1271, 2007.

    Article  Google Scholar 

  5. Bia, D., R. L. Armentano, Y. Zócalo, W. Barmak, E. Migliaro, and E. I. C. Fischer. In vitro model to study arterial wall dynamics through pressure-diameter relationship analysis. Latin Am. Appl. Res. 35:217–224, 2005.

    Google Scholar 

  6. Bussy, C., P. Boutouyrie, P. Lacolley, P. Challande, and S. Laurent. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35(5):1049–1054, 2000.

    Article  Google Scholar 

  7. Cheng, H. M., D. Lang, C. Tufanaru, and A. Pearson. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int. J. Cardiol. 167(5):1867–1876, 2013.

    Article  Google Scholar 

  8. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, Chap. 7 (2nd ed.). New York: Springer, p. 277, 1993.

    Book  Google Scholar 

  9. Hariton, I., G. de Botton, T. C. Gasser, and G. A. Holzapfel. Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model Mechanobiol. 6(3):163–175, 2007.

    Article  Google Scholar 

  10. Hirano, H., T. Horiuchi, A. Kutluk, Y. Kurita, T. Ukawa, R. Nakamura, N. Saeki, Y. Higashi, S. Hodis, and M. Zamir. Arterial wall tethering as a distant boundary condition. Phys. Rev. E 80:51913, 2009.

    Article  Google Scholar 

  11. Hodis, S., and M. Zamir. Arterial wall tethering as a distant boundary condition. Phys. Rev. E 80(5):051913, 2009; (1–13).

    Article  Google Scholar 

  12. Holzapfel, A. G., and T. C. Gasser. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A 21:441–463, 2002.

    Article  MATH  Google Scholar 

  14. Holzapfel, G. A., and H. W. Weizsäcker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28(4):377–392, 1998.

    Article  Google Scholar 

  15. Horgan, C. O., and G. Saccomandi. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1:251–266, 2003.

    Article  Google Scholar 

  16. Ilea, D. E., C. Duffy, L. Kavanagh, A. Stanton, and P. F. Whelan. Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(1):158–177, 2013.

    Article  Google Scholar 

  17. Jegelevicius, D., and A. Lukosevicius. Ultrasonic measurements of human carotid artery wall intima-media thickness. Ultragras 2:43–47, 2002.

    Google Scholar 

  18. Khamdaeng, T., J. Luo, J. Vappou, P. Terdtoon, and E. E. Konofagou. Arterial stiffness identification of the human carotid artery using the stress-strain relationship in vivo. Ultrasonics 52(3):402–411, 2012.

    Article  Google Scholar 

  19. Labropoulos, N., M. Ashraf Mansour, S. S. Kang, D. S. Oh, J. Buckman, and W. H. Baker. Viscoelastic properties of normal and atherosclerotic carotid arteries. Eur. J. Vasc. Endovasc. Surg. 19(3):221–225, 2000.

    Article  Google Scholar 

  20. Liu, C., D. Zheng, A. Murray, and C. Liu. Modeling carotid and radial artery pulse pressure waveforms by curve fitting with Gaussian functions. Biomed. Signal Process. Control 8:449–454, 2013.

    Article  Google Scholar 

  21. Loizou, C. P. A review of ultrasound common carotid artery image and video segmentation techniques. Med. Biol. Eng. Comput. 52(12):1073–1093, 2014.

    Article  Google Scholar 

  22. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11:431–441, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mattace-Raso, F. U., T. J. van der Cammen, A. Hofman, N. M. van Popele, M. L. Bos, M. A. Schalekamp, R. Asmar, R. S. Reneman, A. P. Hoeks, M. M. Breteler, and J. C. Witteman. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113(5):657–663, 2006.

    Article  Google Scholar 

  24. Özkaya, N., M. Nordin, D. Goldsheyder, and D. Leger. Fundamentals of Biomechanics Equilibrium, Motion, and Deformation (3rd ed.). New York: Springer, pp. 221–228, 2012.

    Book  Google Scholar 

  25. Perdikaris, P., and G. E. Karniadakis. Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42(5):1012–1023, 2014.

    Article  Google Scholar 

  26. Raghu, R., I. E. Vignon-Clementel, C. A. Figueroa, and C. A. Taylor. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J. Biomech. Eng. 133(8):3–14, 2011.

    Google Scholar 

  27. Safar, M. E., and A. Kakou. Carotid and brachial blood pressure: measurements in hypertensive subjects. J. Rev. Bras. Hipertens. 5(3):122–124, 2008.

    Google Scholar 

  28. Soleimani, E., M. Mokhtari Dizaji, and H. Saberi. Carotid artery wall motion estimation from consecutive ultrasonic images: comparison between block-matching and maximum-gradient algorithms. J. Tehran Univ. Heart Center 6:72–78, 2011.

    Google Scholar 

  29. Soleimani, E., M. Mokhtari-Dizaji, and H. Saberi. A novel non-invasive ultrasonic method to assess total axial stress of the common carotid artery wall in healthy and atherosclerotic men. J. Biomech. 48:1860–1867, 2015.

    Article  Google Scholar 

  30. Taber, A. L. Nonlinear Theory of Elasticity, Application in Biomechanics (2nd ed.). Washington: World Scientific Publishing Co., pp. 127–135, 2008.

    Google Scholar 

  31. Valdez-Jasso, D., D. Bia, Y. Zócalo, R. L. Armentano, M. A. Haider, and M. S. Olufsen. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions. Ann. Biomed. Eng. 39(5):1438–1456, 2011.

    Article  Google Scholar 

  32. Valdez-Jasso, D., M. A. Haider, H. T. Banks, D. Bia, Y. Zocalo, R. L. Armentano, and M. S. Olufsen. Analysis of viscoelastic wall properties in ovine arteries. IEEE Trans. Biomed. Eng. 56(2):210–219, 2009.

    Article  Google Scholar 

  33. Vermeersch, S. J., E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, G. De Backer, L. M. Van Bortel, T. C. Gillebert, P. R. Verdonck, and P. Segers. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiol. Meas. 29(11):1267–1280, 2008.

    Article  Google Scholar 

  34. Wang, Z., N. B. Wood, and X. Y. Xu. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow. Int. J. Numer. Method Biomed. Eng. 31(5):e02709–e02720, 2015.

    Article  MathSciNet  Google Scholar 

  35. Zahnd, G., M. Orkisz, A. Sérusclat, P. Moulin, and D. Vray. Simultaneous extraction of carotid artery intima-media interfaces in ultrasound images: assessment of wall thickness temporal variation during the cardiac cycle. Int. J. Comput. Assist. Radiol. Surg. 9(4):645–658, 2014.

    Article  Google Scholar 

  36. Zhao, S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35(10):1367–1377, 2002.

    Article  Google Scholar 

  37. Zulliger, M. A., A. Rachev, and N. Stergiopulos. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Heart Circ. Physiol. 10:1–39, 2004.

    Google Scholar 

Download references

Acknowledgments

This study was approved by Faculty of Medical Sciences, Tarbiat Modares University. This work was supported in part by the Iran National Science Foundation (INSF).

Conflict of interest

This study was not funded. This study have no conflict of interest to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Tarbiat Modares University and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manijhe Mokhtari-Dizaji.

Additional information

Associate Editors Dr. Ajit P. Yoganathan & Dr. Frank Gijsen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, E., Mokhtari-Dizaji, M., Fatouraee, N. et al. Estimation of Biomechanical Properties of Normal and Atherosclerotic Common Carotid Arteries. Cardiovasc Eng Tech 10, 112–123 (2019). https://doi.org/10.1007/s13239-018-00389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00389-9

Keywords

Navigation