Skip to main content
Log in

Computational Investigation of a Self-Powered Fontan Circulation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Children born with anatomic or functional “single ventricle” must progress through two or more major operations to sustain life. This management sequence culminates in the total cavopulmonary connection, or “Fontan” operation. A consequence of the “Fontan circulation”, however, is elevated central venous pressure and inadequate ventricular preload, which contribute to continued morbidity. We propose a solution to these problems by increasing pulmonary blood flow using an “injection jet” (IJS) in which the source of blood flow and energy is the ventricle itself. The IJS has the unique property of lowering venous pressure while enhancing pulmonary blood flow and ventricular preload. We report preliminary results of an analysis of this circulation using a tightly-coupled, multi-scale computational fluid dynamics model. Our calculations show that, constraining the excess volume load to the ventricle at 50% (pulmonary to systemic flow ratio of 1.5), an optimally configured IJS can lower venous pressure by 3 mmHg while increasing systemic oxygen delivery. Even this small decrease in venous pressure may have substantial clinical impact on the Fontan patient. These findings support the potential for a straightforward surgical modification to decrease venous pressure, and perhaps improve clinical outcome in selected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

CHD:

Congenital heart disease

IJS:

Injection jet shunt

IVC:

Inferior vena cava

LPM:

Lumped parameter model

NES:

No entrainment shunt

PVR:

Pulmonary vascular resistance

RPA:

Right pulmonary artery

SVC:

Superior vena cava

TCPC:

Total cavopulmonary connection

References

  1. Alexi-Meskishvili, V., S. Ovroutski, P. Ewert, I. Dahnert, F. Berger, P. Lange, and R. Hetzer. Optimal conduit size or extracardiac Fontan Operation. Eur. J. Cardiothorac. Surg. 18:690–695, 2000.

    Article  Google Scholar 

  2. Bove, E., M. de Leval, F. Migliavacca, R. Balossino, and G. Dubini. Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr. Cardiol. 28:477–481, 2007.

    Article  Google Scholar 

  3. Bove, E., F. Migliavacca, M. de Leval, R. Balossino, G. Pennati, T. Lloyd, S. Khambadkone, T. Hsia, and G. Dubini. Use of mathematical modeling to compare and predict hemodynamics effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 136:312–320, 2008.

    Article  Google Scholar 

  4. Brahim, A., M. Prevost, and R. Bugarel. Momentum transfer in a vertical down flow liquid jet ejector: case of self gas aspiration and emulsion flow. Int. J. Multiphase Flow. 10:79–94, 1984.

    Article  Google Scholar 

  5. CD-Adapco a Siemens Business, StarCCM + 11.04.010 User Guide, 2016

  6. Ceballos, A., R. Argueta-Morales, E. Divo, R. Osorio, C. Caldarone, A. Kassab, and W. DeCampli. Computational analysis of hybrid norwood circulation with distal aortic arch obstruction and reverse Blalock-Taussig. Shunt Ann. Thorac. Surg. 94:1540–1550, 2012.

    Article  Google Scholar 

  7. Ceballos A, Divo E, Argueta-Morales R, Calderone C, Kassab A, and DeCampli W. A multi-scale CFD analysis of the hybrid norwood palliative treatment for hypoplastic left heart syndrome: effect of the reverse Blalock-Taussig shunt diameter. ASME 2013 IMECE, vol. 3B: Biomedical and Biotechnology Engineering. ASME paper number IMECE 2013-66856

  8. Chungsomprasong, P., J. Soongswang, A. Nana, K. Durongpisitkul, D. Loahaprasitiporn, C. Vijansorn, and S. Sriyodchartti. Medium and long-term outcomes of Fontan operation. J. Med. Assoc. Thai. 94(3):323–330, 2011.

    Google Scholar 

  9. Corno, A., C. Vergara, C. Subramanian, R. Johnson, T. Passerini, A. Veneziani, L. Formaggia, N. Alphonso, A. Quarteroni, and J. Jarvis. Assisted Fontan procedure: animal and in vitro models and computational fluid dynamics study. Interact. Cardio Vasc. Thorac. Surg. 10:679–684, 2010.

    Article  Google Scholar 

  10. de Leval, M., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, A. Redington, and R. Pietrabissa. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–513, 1996.

    Article  Google Scholar 

  11. Delorme, Y., K. Anupindi, A. Kerlo, D. Shetty, M. Rodefeld, J. Chen, and S. Frankel. Large eddy simulation of powered Fontan hemodynamics. J. Biomech. 46:408–422, 2013.

    Article  Google Scholar 

  12. Esmaily-Moghadam, M., Y. Bazilevs, T. Hsia, I. Vignon-Clementel, and A. Mardsen. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48:277–291, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. Esmaily-Moghadam, M., Y. Bazilevs, and A. Mardsen. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech. 52:1141–1152, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  14. Esmaily-Moghadam, M., T. Hsia, and A. Mardsen. The assisted bidirectional Glenn: A novel surgical approach for first-stage single-ventricle heart palliation. J. Thorac. Cardiovasc. Surg. 149:699–705, 2015.

    Article  Google Scholar 

  15. Fontan, F., and E. Baudet. Surgical repair of tricuspid atresia. Thorax 26:240–248, 1971.

    Article  Google Scholar 

  16. Forton, K., Y. Motohi, G. Deboeck, V. Faoro, and R. Naeije. Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships. J. Appl. Physiol. 121:1145–1150, 2016.

    Article  Google Scholar 

  17. Geleijnse, M., P. Fioretti, and J. Roelandt. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J. Am. Coll. Cardiol. 30:595–606, 1997.

    Article  Google Scholar 

  18. Gewillig, M. Congenital heart disease the Fontan circulation. Heart 91:839–846, 2005.

    Article  Google Scholar 

  19. Gewillig, M., and S. Brown. The Fontan circulation after 45 years: update in physiology. Heart 102:1081–1086, 2016.

    Article  Google Scholar 

  20. Gewillig, M., S. Brown, B. Eyskens, R. Heying, J. Ganame, W. Budts, A. Gerche, and M. Gorenflo. State-of-the-art congential the Fontan circulation: who controls the cardiac output? Interact. Cardio Vasc. Thorac. Surg. 10:428–433, 2010.

    Article  Google Scholar 

  21. Gewillig, M., and D. Goldberg. Failure of the Fontan circulation. Heart Failure Clin. 10:105–116, 2014.

    Article  Google Scholar 

  22. Goldstein, B., C. Connor, L. Gooding, and A. Rocchini. Relation of systemic venous return, pulmonary vascular resistance, and diastolic dysfunction to exercise capacity in patients with single ventricle receiving Fontan palliation. Am. J. Cardiol. 105:1169–1175, 2010.

    Article  Google Scholar 

  23. Greenfield, J., and D. Fry. Relationship between instantaneous aortic flow and the pressure gradient. Circ. Res. 17:340–348, 1965.

    Article  Google Scholar 

  24. Henaine, R., M. Vergnat, E. Bacha, B. Baudet, V. Lambert, E. Belli, and A. Serraf. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J. Thorac. Cardiovasc. Surg. 146:522–529, 2013.

    Article  Google Scholar 

  25. Hijazi, Z., J. Fahey, C. Kleinman, G. Kopf, and W. Hellenbrand. Hemodyanmic evaluation before and after closure of fenestrated Fontan: an acute study of changes in oxygen delivery. Circulation 86:196–202, 1992.

    Article  Google Scholar 

  26. Hjortdal, V., K. Emmertson, E. Stenbog, T. Frund, M. Schmidt, O. Kromann, K. Sorensen, and E. Pedersen. Effects of exercise and respriation on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108:1227–1231, 2003.

    Article  Google Scholar 

  27. Hsia, T., D. Cosentino, C. Corsini, G. Pennati, G. Dubini, and F. Migliavacca. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 124:S204–S210, 2011.

    Article  Google Scholar 

  28. Hsia, T., F. Migliavacca, S. Pittaccio, A. Radaelli, G. Dubini, G. Pennati, and M. de Leval. Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J. Surg. Res. 116:305–313, 2004.

    Article  Google Scholar 

  29. Itatani, K., K. Miyaji, Y. Qian, J. Liu, T. Miyakoshi, A. Murakami, M. Ono, and M. Umeza. Influence of surgical arch reconstruction methods on single ventricle workload in the Norwood procedure. J. Thorac. Cardiovasc. Surg. 144:130–138, 2012.

    Article  Google Scholar 

  30. Itatani, K., K. Miyaji, T. Tomoyasu, Y. Nakahata, O. Kuniyoshi, S. Takamoto, and M. Ishii. Optimal conduit size of the extracardiac fontan operation based on energy loss and flow stagnation. Soc. Thorac. Surg. 88:565–573, 2009.

    Article  Google Scholar 

  31. Kandakure, M., V. Gaiker, and A. W. Patwardhan. Hydrodynamic aspects of ejectors. Chem. Eng. Sci. 60:6391–6402, 2005.

    Article  Google Scholar 

  32. Kroll, M., D. Hellums, L. McIntire, A. Schafer, and J. Moake. Platelets and shear stress. J. Am. Soc. Hematol. 88(5):1525–1541, 1996.

    Google Scholar 

  33. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. Vignon-Clementel, G. Dubini, G. Pennati, A. Taylor, A. Dorfman, A. Hlavacek, A. Mardsen, T. Hsia, and F. Migliavacca. Predicitive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: Two patient-specific cases. J. Biomech. 46:423–429, 2013.

    Article  Google Scholar 

  34. Kung, E., G. Pennati, F. Migliavacca, T. Hsia, R. Figliola, A. Mardsen, and A. Giardini. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 136:081007-1–081007-14, 2014.

    Google Scholar 

  35. Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. Bove, M. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141, 2005.

    Article  Google Scholar 

  36. Long, C., M. Hsu, Y. Bazilevs, J. Feinstein, and A. Marsden. Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Meth. Biomed. Eng. 28:513–527, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  37. Luo, C., D. Ramachandran, D. Ware, T. Ma, and J. Clark. Modeling left ventricular diastolic dysfunction: classification and key indicators. Theor. Biol. Med. Model. 8:14, 2011.

    Article  Google Scholar 

  38. Mardsen, A., A. Bernstein, V. Reddy, S. Shadden, R. Spilker, F. Chan, C. Taylor, and J. Feinstein. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137:394–403, 2009.

    Article  Google Scholar 

  39. Mardsen, A., I. Vignon-Clementel, F. Chan, J. Feinstein, and C. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35:250–263, 2007.

    Article  Google Scholar 

  40. Marshall, H., H. Swan, H. Burchell, and E. Wood. Effect of breathing oxygen on pulmonary artery pressure and pulmonary vascular resistance in patients with ventricular septal defect. Circulation 23:241–252, 1961.

    Article  Google Scholar 

  41. Migliavacca, F., P. Kilner, G. Pennati, G. Dubini, R. Pietrabissa, R. Fumero, and M. de Leval. Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans. Biomed. Eng. 46:393–399, 1999.

    Article  Google Scholar 

  42. Moghadam, M., I. Vignon-Clementel, R. Figliola, and A. Mardsen. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  43. Naeije, R., and N. Chesler. Pulmonary circulation at exercise. Compr. Physiol. 2(1):711–741, 2012.

    Google Scholar 

  44. Ni, M. Computational proof of concept and analysis of a self-powered Fontan circulation, University of Central Florida, PhD Dissertation, 2017

  45. Pagnamenta, A., P. Fesler, A. Vandinivit, S. Brimioulle, and R. Naeije. Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit. Care Med. 31:1140–1146, 2003.

    Article  Google Scholar 

  46. Parker, S. E., C. T. Mai, M. A. Canfield, R. Rickard, Y. Wang, R. E. Meyer, P. Anderson, C. A. Mason, J. S. Collins, R. S. Kirby, and A. Correa. Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. A Clin. Mol. Teratol. 88(12):1008–1016, 2010.

    Article  Google Scholar 

  47. Pekkan, K., D. Frakes, D. Zelicourt, C. Lucas, J. Parks, and A. Yoganathan. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO J. 51:618–628, 2005.

    Article  Google Scholar 

  48. Petrofski, J., C. Hoopes, T. Bashmore, S. Russel, and C. Milano. Mechanical ventricular support lowers pulmonary vascular resistance in a patient with congenital heart disease. Ann. Thorac. Surg. 75:1005–1007, 2003.

    Article  Google Scholar 

  49. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4:111–124, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  50. Quarteroni, A., and A. Veneziani. Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model. Simul. 1:173–195, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  51. Reeves, J., J. Linehan, and K. Stenmark. Distensibility of the normal human lung circulation during exercise. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L419–L425, 2005.

    Article  Google Scholar 

  52. Rivera, I., M. Mendonca, J. Andrade, V. Moises, O. Campos, C. Silva, and A. Carvalho. Pulmonary venous flow index as a predictor of pulmonary vascular resistance variability in congenital heart disease with increased pulmonary flow: a comparative study before and after oxygen inhalation. Echocardiography. 30:952–960, 2013.

    Article  Google Scholar 

  53. Rodefeld, M., S. Frankel, and G. Giridharan. Cavopulmonary assist: (Em)powering the univentricular Fontan circulation. Semin. Thorac. Cardiovasc. Surg. Pediatri. Card Surg. Annu. 14:45–54, 2011.

    Article  Google Scholar 

  54. Sankaran, S., M. Moghadam, A. Kahn, E. Tseng, J. Guccione, and A. Mardsen. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40:2228–2242, 2012.

    Article  Google Scholar 

  55. Schiavazzi, D., E. Kung, A. Mardsen, C. Baker, G. Pennati, T. Hsia, A. Hlavacek, and A. Dorfman. Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. J. Thorac. Cardiovasc. Surg. 149:689–696, 2015.

    Article  Google Scholar 

  56. Schmitt, B., P. Steendijk, S. Ovroutski, K. Lunze, P. Rahmanzadeh, N. Maarouf, P. Ewert, F. Berger, and T. Kuehne. Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during Dobutamine stress. Circ. Cardiovasc. Imaging 3:623–631, 2010.

    Article  Google Scholar 

  57. Shachar, G., B. Fuhrman, Y. Wang, R. Lucas, and J. Lock. Rest and exercise hemodynamics after the Fontan procedure. Circulation 65:1043–1048, 1982.

    Article  Google Scholar 

  58. Shimizu, S., T. Kawada, D. Une, M. Fukumitsu, M. Turner, A. Kamiya, T. Shishido, and M. Sugimachi. Partial cavopulmonary assist from the inferior vena cava to the pulmonary artery improves hemodynamics in failing Fontan circulation: a theoretical analysis. J. Physiol. Sci. 66:249–255, 2016.

    Article  Google Scholar 

  59. Tang, B., S. Pickard, F. Chan, P. Tsao, C. Taylor, and J. Feinstein. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm. Circ. 2:470–476, 2012.

    Article  Google Scholar 

  60. Valdovinos, J., E. Shkolyar, G. Carman, and D. Levi. In vitro evaluation of an external compression device for Fontan mechanical assistance. Artif. Organs 38(3):199–207, 2014.

    Article  Google Scholar 

  61. Yadav, R., and A. Patwardhan. Design aspects of ejectors: effects of suction chamber geometry. Chem. Eng. Sci. 63:3886–3897, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus W. Ni.

Ethics declarations

Funding

This study was funded by an Innovative Grant award from the American Heart Association (AHA 5IRG22470015).

Conflict of interest

Marcus Ni declares that he has no conflict of interest. Ray Prather declares that he has no conflict of interest. Giovanna Rodriguez declares that she has no conflict of interest. Rachel Quinn declares that she has no conflict of interest. Eduardo Divo declares that he has no conflict of interest. Mark Fogel declares that he has no conflict of interest. Alain Kassab declares that he has no conflict of interest. William DeCampli declares that he has no conflict of interest.

Ethical approval

This study does not contain any studies with human participants or animals performed by the authors.

Additional information

Associate Editors Alison Marsden and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, M.W., Prather, R.O., Rodriguez, G. et al. Computational Investigation of a Self-Powered Fontan Circulation. Cardiovasc Eng Tech 9, 202–216 (2018). https://doi.org/10.1007/s13239-018-0342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0342-5

Keywords

Navigation