Skip to main content

Advertisement

Log in

The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery

  • Review Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In spite of some good successes and excellent researches of Nickel–titanium shape memory alloy (NiTi-SMA) in reconstructive surgery, there are still serious limitations to the clinical applications of NiTi alloy today. The potential leakage of elements and ions could be toxic to cells, tissues and organs. This review discussed the properties, clinical applications, corrosion performance, biocompatibility, the possible preventive measures to improve corrosion resistance by surface/structure modifications and the long-term challenges of using SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yahia L, Manceur A, Chaffraix P (2006) Bioperformance of shape memory alloy single crystals. Biomed Mater Eng 16(2):101–118

    CAS  PubMed  Google Scholar 

  2. Guillemot F (2005) Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices 2(6):741–748

    Article  CAS  PubMed  Google Scholar 

  3. Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28(Parts 3, 4):563–574

    Google Scholar 

  4. Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557–567

    Article  CAS  PubMed  Google Scholar 

  5. Ma H, Cho C, Wilkinson T (2008) A numerical study on bolted end-plate connection using shape memory alloys. Mater Struct 41:1419–1426

    Article  CAS  Google Scholar 

  6. Szold A (2006) Nitinol: shape-memory and super-elastic materials in surgery. Surg Endosc 20:1493–1496

    Article  CAS  PubMed  Google Scholar 

  7. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274

    Article  Google Scholar 

  8. Andrawes B, DesRoches R (2007) Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures. Struct Control Health Monit 14(2):301–320

    Article  Google Scholar 

  9. Gori F, Carnevale D, Doro Altan A et al (2006) A new hysteretic behavior in the electrical resistivity of flexinol shape memory alloys versus temperature. Int J Thermophys 27(3):866–879

    Article  CAS  Google Scholar 

  10. Janke L, Czaderski C, Motavalli M et al (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38:578–592

    CAS  Google Scholar 

  11. Mertmann M, Vergani G (2008) Design and application of shape memory actuators. Eur Phys J Spec Top 158:221–230

    Article  Google Scholar 

  12. Ryhanen J, Leminen A, Jamsa T et al (2006) A novel treatment of grade III acromioclavicular joint dislocations with a C-hook implant. Arch Orthop Trauma Surg 126:22–27

    Article  PubMed  Google Scholar 

  13. Wever DJ, Elstrodt JA, Veldhuizen AG et al (2002) Scoliosis correction with shape-memory metal: results of an experimental study. Eur Spine J 11:100–106

    Article  CAS  PubMed  Google Scholar 

  14. Petoumeno E, Kislyuk M, Hoederath H et al (2008) Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J Orofac Orthop 69:411–423

    Article  PubMed  Google Scholar 

  15. Sevilla P, Martorell F, Libenson C et al (2008) Laser welding of NiTi orthodontic archwires for selective force application. J Mater Sci Mater Med 19:525–529

    Article  CAS  PubMed  Google Scholar 

  16. Morawiec HZ, Lekston ZH, Kobus KF et al (2007) Superelastic NiTi springs for corrective skull operations in children with craniosynostosis. J Mater Sci Mater Med 18:1791–1798

    Article  CAS  PubMed  Google Scholar 

  17. Xu W, Frank TG, Stockham G et al (1999) Shape memory alloy fixator system for suturing tissue in minimal access surgery. Ann Biomed Eng 27:663–669

    Article  CAS  PubMed  Google Scholar 

  18. Ng Y, Shimi SM, Kernohan N et al (2006) Skin wound closure with a novel shape-memory alloy fixator. Surg Endosc 20:311–315

    Article  CAS  PubMed  Google Scholar 

  19. Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18:725–751

    Article  CAS  PubMed  Google Scholar 

  20. Wu LL, Liang HF, Cai CL et al (2005) Properties of diamond-like carbon films on Ti–Ni alloy. Biaomian Jishu 34(2):30–31

    Google Scholar 

  21. Yeung KW, Poon RW, Chu PK et al (2007) Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel–titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A 82(2):403–414

    CAS  PubMed  Google Scholar 

  22. Tracana RB, Sousa JP, Carvalho GS (1994) Mouse inflammatory response to stainless steel corrosion products. Mater Sci Mater Med 5(10):596–600

    Article  CAS  Google Scholar 

  23. Wang J, Li N, Han EH et al (2006) Effect of pH, temperature and Cl concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17(10):885–890

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Li N, Han E et al (2006) Effect of pH, temperature and Cl concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva. J Mater Sci Mater Med 17:885–890

    Article  CAS  PubMed  Google Scholar 

  25. Eggeler G, Hornbogen E, Yawny A et al (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1–2):24–33

    Google Scholar 

  26. Hornbogen E (2004) Review: thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399

    Article  CAS  Google Scholar 

  27. Williams DF (1999) The Williams dictionary of biomaterials. University Press, Liverpool

    Google Scholar 

  28. Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381:557–567

    Article  CAS  PubMed  Google Scholar 

  29. Hunt JA, Rhodes NP, Williams DF (1995) Analysis of the inflammatory exudates surrounding implanted polymers using flow cytometry. J Mater Sci Mater Med 6:839

    Article  CAS  Google Scholar 

  30. Liu H, Luo Y, Higa M et al (2007) Biochemical evaluation of an artificial anal sphincter made from shape memory alloys. J Artif Organs 10:223–227

    Article  CAS  PubMed  Google Scholar 

  31. Chu CL, Wang RM, Hu T, Yin LH et al (2009) XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. J Mater Sci Mater Med 20:223–228

    Article  CAS  PubMed  Google Scholar 

  32. Chu CL (2006) Bioactive NiTi shape memory alloy fabricated by oxidizing in H2O2 solution and subsequent NaOH treatment. J Mater Sci 41:1671–1674

    Article  CAS  Google Scholar 

  33. Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19:1553–1557

    Article  CAS  PubMed  Google Scholar 

  34. Barrabes M, Michiardi A, Aparicio C et al (2007) Oxidized nickel–titanium foams for bone reconstructions: chemical and mechanical characterization. J Mater Sci Mater Med 18:2123–2129

    Article  CAS  PubMed  Google Scholar 

  35. Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83(1):72–84

    PubMed  Google Scholar 

  36. Schaefer O, Lohrmann C, Winterer J et al (2004) Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon. Clin Radiol 59(12):1128–1131

    Article  CAS  PubMed  Google Scholar 

  37. Linder S, Pinkowski W, Aepfelbacher M (2002) Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 23(3):767–773

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi S, Ohgoe Y, Ozeki K et al (2007) Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci Mater Med 18:2263–2268

    Article  CAS  PubMed  Google Scholar 

  39. Michiardi A, Aparicio C, Planell JA et al (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B Appl Biomater 77(2):249–256

    CAS  PubMed  Google Scholar 

  40. Chu CL, Hu T, Wu SL et al (2007) Surface structure and properties of biomedical NiTi shape memory alloy after Fenton’s oxidation. Acta Biomater 3(5):795–806

    Article  CAS  PubMed  Google Scholar 

  41. Chrzanowski W, Abou Neel EA, Armitage DA et al (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19(4):1553–1557

    Article  CAS  PubMed  Google Scholar 

  42. Cheng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41:4961–4964

    Article  CAS  Google Scholar 

  43. Heng Y, Cai W, Li HT et al (2006) Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. J Mater Sci 41(15):4961–4964

    Article  Google Scholar 

  44. Boccaccini AR, Peters C, Roether JA et al (2006) Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/bioglass coatings on NiTi shape memory alloy wires. J Mater Sci 41:8152–8159

    Article  CAS  Google Scholar 

  45. Li C-Y, Chen M-F, Qiang W (2006) Study on the biomimetic HA formation on NiTi implant and its biological response. Chin J Biomed Eng 25(3):355–358

    Google Scholar 

  46. Burke M, Clarke B, Rochev Y et al (2008) Estimation of the strength of adhesion between a thermoresponsive polymer coating and nitinol wire. J Mater Sci Mater Med 19:1971–1979

    Article  CAS  PubMed  Google Scholar 

  47. Alves-Claro APR, Claro FAE, Uzumaki ET (2008) Wear resistance of nickel–titanium endodontic files after surface treatment. J Mater Sci Mater Med 19:3273–3277

    Article  CAS  PubMed  Google Scholar 

  48. Samaroo HD, Lu J, Webster TJ (2008) Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int J Nanomedicine 3(1):75–82

    CAS  PubMed  Google Scholar 

  49. Liu XM, Wu SL, Chan YL et al (2007) Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasma-implanted with nitrogen at different implantation voltages. J Biomed Mater Res A 82(2):469–478

    CAS  PubMed  Google Scholar 

  50. Li UM, Iijima M, Endo K et al (2007) Application of plasma immersion ion implantation for surface modification of nickel–titanium rotary instruments. Dent Mater J 26(4):467–473

    Article  CAS  PubMed  Google Scholar 

  51. Yanga H, Qiana L, Zhou Z et al (2007) Effect of surface treatment by ceramic conversion on the fretting behavior of NiTi shape memory alloy. Tribol Lett 25(3):215–224

    Article  Google Scholar 

  52. Chu CL, Lin PH (2005) Characterization of transformation behavior in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. J Mater Sci 40:773–776

    Article  CAS  Google Scholar 

  53. Rhalmi S, Charette S, Assad M et al (2007) The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Eur Spine J 16:1063–1072

    Article  PubMed  Google Scholar 

  54. Liang CY, Yang Y, Wang HS et al (2008) Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses. Chin Sci Bull 53(5):700–705

    Article  CAS  Google Scholar 

  55. Likibi F, Assad M, Coillard C et al (2005) Influence of biomaterial structure and hardness on its osseo-integration: histomorphometric evaluation of porous nitinol and titanium implants. Eur J Orthop Surg Traumatol 15:257–263

    Article  Google Scholar 

  56. Likibi F, Assad M, Jarzem P (2004) Osseointegration study of porous nitinol versus titanium orthopaedic implants. Eur J Orthop Surg Traumatol 14:209–213

    Article  Google Scholar 

  57. Li B, Rong L, Li Y (1999) Microstructure and superelasticity of porous NiTi alloy. Sci China Ser E 42(1):94–99

    Article  CAS  Google Scholar 

  58. Nie Q, Ji ZY, Lin JX (2007) Surface nanostructures orienting self-protection of an orthodontic nickel–titanium shape memory alloys wire. Chin Sci Bull 52(21):3020–3023

    Article  CAS  Google Scholar 

  59. Goryczka T, Lelatko J, Ochin P (2008) Nanocrystalline platinum layer deposited on NiTiCu shape memory strip. Eur Phys J Spec Top 158:33–38

    Article  Google Scholar 

  60. Raghavan V (2009) Al–Ni–Ti (aluminum–nickel–titanium). JPEDAV 30:77–78

    Article  CAS  Google Scholar 

  61. Raghavan V (2009) Al–Co–Ni–Ti (aluminum–cobalt–nickel–titanium). JPEDAV 30:199–200

    Article  CAS  Google Scholar 

  62. Raghavan V (2009) Al–Fe–Ni–Ti (aluminum–iron–nickel–titanium). JPEDAV 30:287–290

    Article  CAS  Google Scholar 

  63. Prasad RVS, Phanikumar G (2009) Amorphous and nano crystalline phase formation in Ni2MnGa ferromagnetic shape memory alloy synthesized by melt spinning. J Mater Sci 44:2553–2559

    Article  CAS  Google Scholar 

  64. Chernenko VA, Oikawa K, Chmielus M, Besseghini S et al (2009) Properties of Co-alloyed Ni–Fe–Ga ferromagnetic shape memory alloys. JMEPEG 18:548–553

    Article  CAS  Google Scholar 

  65. Bujoreanu LG, Stanciu S et al (2009) Factors influencing the reversion of stress-induced martensite to austenite in a Fe–Mn–Si–Cr–Ni shape memory alloy. JMEPEG 18:500–505

    Article  CAS  Google Scholar 

  66. Liu H, Liu X-j (2007) Corrosion resistance and biocompatibility of FeMnSiCr shape memory alloy. Corros Sci Prot Technol 19(4):293–295

    CAS  Google Scholar 

  67. Gil FJ, Solano E, Pena J et al (2004) Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J Mater Sci Mater Med 15:1181–1185

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Foundation of Guangxi Educational Committee: 200810LX462. The research program of Health Bureau of Guangxi Province: Z2008282.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Zeng or Xiaoying Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Zeng, Y. & Tang, X. The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery. Australas Phys Eng Sci Med 33, 129–136 (2010). https://doi.org/10.1007/s13246-010-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-010-0022-8

Keywords

Navigation