Skip to main content
Log in

LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Myocardial ischemia and reperfusion injury (MI/RI) is a complex pathophysiological process, which can lead to severe myocardial injury. The long noncoding RNA alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) has been revealed to be abnormally expressed in MI, However, its function in MI and the potential mechanism are still unclear.

Objective

To evaluate the functional role of A2M-AS1 in hypoxia/reoxygenation (H/R)-induced neonatal cardiomyocytes and its potential molecular mechanism.

Methods

Dataset GSE66360 was obtained from GEO database for analyzing the RNA expression of A2M-AS1 and interleukin 1 receptor type 2 (IL1R2). KEGG pathway enrichment analysis of the genes that co-expressed with A2M-AS1 was performed. Human neonatal cardiomyocytes were subjected to H/R to construct in vitro models. QRT-PCR and Western blot were adopted to test the levels of mRNA and protein. The viability and apoptosis of cardiomyocytes were tested by CCK-8 and flow cytometry assays, respectively.

Results

The expression of A2M-AS1 was notably downregulated in H/R-treated cardiomyocytes. Overexpression of A2M-AS1 can notably enhance the cell viability of H/R-damaged cardiomyocytes, whereas knockdown of A2M-AS1 showed the opposite outcomes. Besides, a negative correlation was showed between A2M-AS1 and IL1R2 expression. In H/R-treated cardiomyocytes, overexpression of IL1R2 weakened the promoting proliferation and anti-apoptosis effects caused by overexpressing A2M-AS1, however, IL1R2-knockdown abolished the anti-proliferation and pro-apoptosis effects caused by silencing A2M-AS1.

Conclusion

This study demonstrates the potential regulatory role of A2M-AS1/ IL1R2 axis in cardiomyocytes suffered from H/R, and provides insight into the protection of MI/RI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in this study is available from the corresponding author on reasonable request.

References

  • Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376:2053–2064

    CAS  PubMed  Google Scholar 

  • Annapoorani P, Dhandapany PS, Sadayappan S, Ramasamy S, Rathinavel A, Selvam GS (2006) Cardiac isoform of alpha-2 macroglobulin—a new biomarker for myocardial infarcted diabetic patients. Atherosclerosis 186:173–176

    CAS  PubMed  Google Scholar 

  • Bajaj A, Sethi A, Rathor P, Suppogu N, Sethi A (2015) Acute complications of myocardial infarction in the current era: diagnosis and management. J Investig Med 63:844–855

    CAS  PubMed  Google Scholar 

  • Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N (2015) Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol 12:156–167

    PubMed  Google Scholar 

  • Cao X, Wang X, Ling Y, Song X, Yang P, Liu Y, Liu L, Wang L, Guo J, Chen A (2014) Comparison of the degree of autophagy in neonatal rat cardiomyocytes and H9c2 cells exposed to hypoxia/reoxygenation. Clin Lab 60:809–814

    CAS  PubMed  Google Scholar 

  • Chen H, Li X (2019) LncRNA ROR is involved in cerebral hypoxia/reoxygenation-induced injury in PC12 cells via regulating miR-135a-5p/ROCK1/2. Am J Transl Res 11:6145–6158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Hu Q, Zhang BF, Liu XP, Yang S, Jiang H (2019) Long noncoding RNA UCA1 inhibits ischaemia/reperfusion injury induced cardiomyocytes apoptosis via suppression of endoplasmic reticulum stress. Genes Genomics 41:803–810

    CAS  PubMed  Google Scholar 

  • Chi Y, Wang D, Wang J, Yu W, Yang J (2019) Long non-coding RNA in the pathogenesis of cancers. Cells 8:1015

    CAS  PubMed Central  Google Scholar 

  • Coulter KR, Wewers MD, Lowe MP, Knoell DL (1999) Extracellular regulation of interleukin (IL)-1beta through lung epithelial cells and defective IL-1 type II receptor expression. Am J Respir Cell Mol Biol 20:964–975

    CAS  PubMed  Google Scholar 

  • Ding J, Berryman DE, Kopchick JJ (2011) Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res 20:1305–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois CM, Ruscetti FW, Palaszynski EW, Falk LA, Oppenheim JJ, Keller JR (1990) Transforming growth factor beta is a potent inhibitor of interleukin 1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. J Exp Med 172:737–744

    CAS  PubMed  Google Scholar 

  • Ferrè F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17:106–116

    PubMed  Google Scholar 

  • Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, Adamek A, Dienesch C, Thum T, Gerondakis S, Ertl G, Bauersachs J (2007) Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia–reperfusion injury. Am J Pathol 171:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giulietti M, Righetti A, Principato G, Piva F (2018) LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis 39:1016–1025

    CAS  PubMed  Google Scholar 

  • Gutschner T (2015) Silencing long noncoding RNAs with genome-editing tools. Methods Mol Biol 1239:241–250

    CAS  PubMed  Google Scholar 

  • Hartman MHT, Groot HE, Leach IM, Karper JC, van der Harst P (2018) Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure. Trends Cardiovasc Med 28:369–379

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2013) Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J Clin Investig 123:92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Tkebuchava T, Hu D (2019) Managing acute myocardial infarction in China. Eur Heart J 40:1179–1181

    PubMed  Google Scholar 

  • Ishiguro T, Takeda J, Fang X, Bronson H, Olson DM (2016) Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term—regulation by progesterone. Physiol Rep 4:e12866

    PubMed  PubMed Central  Google Scholar 

  • Jin H, Yu J (2019) Lidocaine protects H9c2 cells from hypoxia-induced injury through regulation of the MAPK/ERK/NF-kappaB signaling pathway. Exp Ther Med 18:4125–4131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Dai Y, Yan S, Shi Y, Han B, Li J, Cha L, Mu J (2017a) Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun 491:1026–1033

    CAS  PubMed  Google Scholar 

  • Li Z, Dou P, Liu T, He S (2017b) Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cell Physiol Biochem 42:1407–1419

    CAS  PubMed  Google Scholar 

  • Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, Ding X, Zhan L, Wu H, Xie Y et al (2019a) lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids 17:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Han K, Zhang D, Chen J, Xu Z, Hou L (2019b) The role of long noncoding RNA in traumatic brain injury. Neuropsychiatr Dis Treat 15:1671–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Sun Q, Zhao H, Tao J, Yan D (2019) Long noncoding RNA NEAT1 sponges miR5 to enhance myocardial ischemia–reperfusion injury via MAPK6 activation. J Cell Physiol 235:105–113

    PubMed  Google Scholar 

  • Ma L, Liu H, Xie Z, Yang S, Xu W, Hou J, Yu B (2014) Ginsenoside Rb3 protects cardiomyocytes against ischemia–reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: a mouse cardiomyocyte model. PLoS ONE 9:e103628

    PubMed  PubMed Central  Google Scholar 

  • Matsushima S, Tsutsui H, Sadoshima J (2014) Physiological and pathological functions of NADPH oxidases during myocardial ischemia–reperfusion. Trends Cardiovasc Med 24:202–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlando S, Sironi M, Bianchi G, Drummond AH, Boraschi D, Yabes D, Mantovani A (1997) Role of metalloproteases in the release of the IL-1 type II decoy receptor. J Biol Chem 272:31764–31769

    CAS  PubMed  Google Scholar 

  • Orrem HL, Shetelig C, Ueland T, Limalanathan S, Nilsson PH, Husebye T, Aukrust P, Seljeflot I, Hoffmann P, Eritsland J et al (2018) Soluble IL-1 receptor 2 is associated with left ventricular remodelling in patients with ST-elevation myocardial infarction. Int J Cardiol 268:187–192

    PubMed  Google Scholar 

  • Qian Y, Mao ZD, Shi YJ, Liu ZG, Cao Q, Zhang Q (2018) Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease. Cell Physiol Biochem 50:1140–1153

    CAS  PubMed  Google Scholar 

  • Qiu L, Liu X (2019) Identification of key genes involved in myocardial infarction. Eur J Med Res 24:22

    PubMed  PubMed Central  Google Scholar 

  • Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143–157

    CAS  PubMed  Google Scholar 

  • Ravindran S, Kurian GA (2017) The role of secretory phospholipases as therapeutic targets for the treatment of myocardial ischemia reperfusion injury. Biomed Pharmacother 92:7–16

    CAS  PubMed  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    PubMed  PubMed Central  Google Scholar 

  • Roberts OL, Holmes K, Muller J, Cross DA, Cross MJ (2009) ERK5 and the regulation of endothelial cell function. Biochem Soc Trans 37:1254–1259

    CAS  PubMed  Google Scholar 

  • Sebastiao MJ, Gomes-Alves P, Reis I, Sanchez B, Palacios I, Serra M, Alves PM (2019) Bioreactor-based 3D human myocardial ischemia/reperfusion in vitro model: a novel tool to unveil key paracrine factors upon AMI. Transl Res 215:57–74

    PubMed  Google Scholar 

  • Sims JE, Dower SK (1994) Interleukin-1 receptors. Eur Cytokine Netw 5:539–546

    CAS  PubMed  Google Scholar 

  • Sun G, Lu Y, Li Y, Mao J, Zhang J, Jin Y, Li Y, Sun Y, Liu L, Li L (2017) miR-19a protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway. Biosci Rep. https://doi.org/10.1042/BSR20170899

    Article  PubMed  PubMed Central  Google Scholar 

  • Thind GS, Agrawal PR, Hirsh B, Saravolatz L, Chen-Scarabelli C, Narula J, Scarabelli TM (2015) Mechanisms of myocardial ischemia–reperfusion injury and the cytoprotective role of minocycline: scope and limitations. Future Cardiol 11:61–76

    CAS  PubMed  Google Scholar 

  • Toldo S, Schatz AM, Mezzaroma E, Chawla R, Stallard TW, Stallard WC, Jahangiri A, Van Tassell BW, Abbate A (2012) Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse. Cardiovasc Drugs Ther 26:273–276

    CAS  PubMed  Google Scholar 

  • Tong G, Wang Y, Xu C, Xu Y, Ye X, Zhou L, Zhu G, Zhou Z, Huang J (2019) Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy. Am J Transl Res 11:5634–5644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN et al (2016) The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 23:1394–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi J, Li QQ, Li BQ, Li N (2020) miR-155 inhibition represents a potential valuable regulator in mitigating myocardial hypoxia/reoxygenation injury through targeting BAG5 and MAPK/JNK signaling. Mol Med Rep 21:1011–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hu S, Chen Y (2015) Hepatocyte growth factor suppresses hypoxia/reoxygenation-induced XO activation in cardiac microvascular endothelial cells. Heart Vessels 30:534–544

    PubMed  Google Scholar 

  • Zhang W, Li Y, Wang P (2018) Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury. Braz J Med Biol Res 51:e6555

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Hong R, Chen W, Xu M, Wang L (2019) The role of long noncoding RNA in major human disease. Bioorg Chem 92:103214

    CAS  PubMed  Google Scholar 

  • Zhou W, Liu T, Saren G, Liao L, Fang W, Zhao H (2019) Comprehensive analysis of differentially expressed long non-coding RNAs in non-small cell lung cancer. Oncol Lett 18:1145–1156

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XYQ conceived and instructed the work. XNL and YD collected the public data and performed the bioinformatics analysis. XLS,FFZ,WJW and MJS carried out a series of tests. YXL and QY analyzed the experimental data. XLS wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Yong Qi.

Ethics declarations

Conflict of interest

Xue-Lian Song, Fei-Fei Zhang, Wen-Jing Wang, Xin-Ning Li, Yi Dang, Ying-Xiao Li, Qian Yang, Mei-Jing Shi, and Xiao-Yong Qi declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, XL., Zhang, FF., Wang, WJ. et al. LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2. Genes Genom 42, 1431–1441 (2020). https://doi.org/10.1007/s13258-020-01007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-01007-6

Keywords

Navigation