Skip to main content

Advertisement

Log in

Liposome size and charge optimization for intraarterial delivery to gliomas

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanoparticles such as liposomes may be used as drug delivery vehicles for brain tumor therapy. Particle geometry and electrostatic properties have been hypothesized to be important determinants of effective tumor targeting after intraarterial injection. In this study, we investigate the combined roles of liposome size and surface charge on the effectiveness of delivery to gliomas after intraarterial injection. Intracarotid injection of liposomes was performed in separate cohorts of both healthy and C6 glioma-bearing Sprague Dawley rats after induction of transient cerebral hypoperfusion. Large (200 nm) and small (60–80 nm) fluorescent dye-loaded liposomes that were either cationic or neutral in surface charge were utilized. Delivery effectiveness was quantitatively measured both with real-time, in vivo and postmortem diffuse reflectance spectroscopy. Semi-quantitative multispectral fluorescence imaging was also utilized to assess the pattern and extent of liposome targeting within tumors. Large cationic liposomes demonstrated the most effective hemispheric and glioma targeting of all the liposomes tested. Selective large cationic liposome retention at the site of glioma growth was observed. The liposome deposition pattern within tumors after intraarterial injection was variable with both core penetration and peripheral deposition observed in specific tumors. This study provides evidence that liposome size and charge are important determinants of effective brain and glioma targeting after intraarterial injection. Our results support the future development of 200-nm cationic liposomal formulations of candidate intraarterial anti-glioma agents for further pre-clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Baere T, Mariani P. Surgical or percutaneous hepatic artery cannulation for chemotherapy. J Visc Surg. 2014;151 Suppl 1:S17–20. doi:10.1016/j.jviscsurg.2013.12.004.

    Article  PubMed  Google Scholar 

  2. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.

    CAS  PubMed  Google Scholar 

  3. Joshi S, Singh-Moon R, Wang M, Bigio IJ. Transient cerebral hypoperfusion assisted intra-arterial delivery of mitoxantrone in C6 glioma bearing rats. J Neurosurg Anesthesiol. 2014;26(4):482.

    Google Scholar 

  4. Joshi S, Singh-Moon RP, Ellis JA, Chaudhuri DB, Wang M, Reif R, et al. Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery. 2015;76(1):92–100. doi:10.1227/NEU.0000000000000552.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hossain SS, Hughes TJ, Decuzzi P. Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomech Model Mechanobiol. 2013. doi:10.1007/s10237-013-0520-1.

    PubMed  PubMed Central  Google Scholar 

  6. Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, et al. In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine. 2013;8(3):343–57. doi:10.2217/nnm.12.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Shah S, Tan J. Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol. 2012;1:66–83.

    Article  CAS  Google Scholar 

  8. Joshi S, Singh-Moon R, Wang M, Chaudhuri DB, Ellis JA, Bruce JN, et al. Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neuro-Oncol. 2014. doi:10.1007/s11060-014-1584-1.

    Google Scholar 

  9. Joshi S, Singh-Moon RP, Wang M, Chaudhuri DB, Holcomb M, Straubinger NL, et al. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neuro-Oncol. 2014. doi:10.1007/s11060-014-1421-6.

    Google Scholar 

  10. Roy Chaudhuri T, Arnold RD, Yang J, Turowski SG, Qu Y, Spernyak JA, et al. Mechanisms of tumor vascular priming by a nanoparticulate doxorubicin formulation. Pharm Res. 2012;29(12):3312–24. doi:10.1007/s11095-012-0823-4.

    Article  CAS  PubMed  Google Scholar 

  11. Meers P, Ali S, Erukulla R, Janoff AS. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim Biophys Acta. 2000;1467(1):227–43.

    Article  CAS  PubMed  Google Scholar 

  12. Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C, Drummond DC, et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 2004;64(7):2572–9.

    Article  CAS  PubMed  Google Scholar 

  13. Reif R, Wang M, Joshi S, A'Amar O, Bigio IJ. Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue. J Biomed Opt. 2007;12(3):034036.

    Article  PubMed  Google Scholar 

  14. Arnold RD, Mager DE, Slack JE, Straubinger RM. Effect of repetitive administration of doxorubicin-containing liposomes on plasma pharmacokinetics and drug biodistribution in a rat brain tumor model. Clin Cancer Res. 2005;11(24 Pt 1):8856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharmazeutische Verfahrenstechnik eV. 2013;84(3):517–25. doi:10.1016/j.ejpb.2012.12.021.

    Article  CAS  Google Scholar 

  16. Gupta B, Levchenko TS, Torchilin VP. TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res. 2007;16(8):351–9.

    PubMed  Google Scholar 

  17. Zhao M, Chang J, Fu X, Liang C, Liang S, Yan R, et al. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target. 2012;20(5):416–21.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Li GL, Wang RZ, Li SF, Wei JJ, Feng M, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes. J Int Med Res. 2010;38(3):957–66.

    Article  CAS  PubMed  Google Scholar 

  19. Thole M, Nobmanna S, Huwyler J, Bartmann A, Fricker G. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target. 2002;10(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  20. Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine. 2012;7:1599–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dedrick RL. Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst. 1988;80(2):84–9.

    Article  CAS  PubMed  Google Scholar 

  22. Joshi S, Meyers PM, Ornstein E. Intracarotid delivery of drugs: the potential and the pitfalls. Anesthesiology. 2008;109(3):543–64. doi:10.1097/ALN.0b013e318182c81b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joshi S, Wang M, Etu JJ, Nishanian EV, Pile-Spellman J. Cerebral blood flow affects dose requirements of intracarotid propofol for electrocerebral silence. Anesthesiology. 2006;104(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  24. Joshi S, Wang M, Etu JJ, Suckow RF, Cooper TB, Feinmark SJ et al. Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. Journal of neuro-oncology. 2007.

  25. Abercrombie M, Ambrose EJ. The surface properties of cancer cells: a review. Cancer Res. 1962;22:525–48.

    CAS  PubMed  Google Scholar 

  26. Dobrzynska I, Skrzydlewska E, Figaszewski ZA. Changes in electric properties of human breast cancer cells. J Membr Biol. 2013;246(2):161–6. doi:10.1007/s00232-012-9516-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dobrzynska I, Szachowicz-Petelska B, Darewicz B, Figaszewski ZA. Characterization of human bladder cell membrane during cancer transformation. J Membr Biol. 2015;248(2):301–7. doi:10.1007/s00232-015-9770-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marquez M, Nilsson S, Lennartsson L, Liu Z, Tammela T, Raitanen M, et al. Charge-dependent targeting: results in six tumor cell lines. Anticancer Res. 2004;24(3a):1347–51.

    CAS  PubMed  Google Scholar 

  29. Blau S, Jubeh TT, Haupt SM, Rubinstein A. Drug targeting by surface cationization. Crit Rev Ther Drug Carrier Syst. 2000;17(5):425–65.

    Article  CAS  PubMed  Google Scholar 

  30. Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66(24):11878–87. doi:10.1158/0008-5472.CAN-06-2354.

    Article  CAS  PubMed  Google Scholar 

  31. Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120(2):420–31.

    Article  CAS  PubMed  Google Scholar 

  32. Mizuno M, Ryuke Y, Yoshida J. Cationic liposomes conjugation to recombinant adenoviral vectors containing herpes simplex virus thymidine kinase gene followed by ganciclovir treatment reduces viral antigenicity and maintains antitumor activity in mouse experimental glioma models. Cancer Gene Ther. 2002;9(10):825–9.

    Article  CAS  PubMed  Google Scholar 

  33. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest. 1998;101(7):1401–13. doi:10.1172/JCI965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 2002;62(23):6831–6.

    CAS  PubMed  Google Scholar 

  35. Stephens FO. Induction chemotherapy: to downgrade aggressive cancers to improve curability by surgery and/or radiotherapy. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2001;27(7):672–88. doi:10.1053/ejso.2001.1158.

    Article  CAS  Google Scholar 

  36. Stephens FO. Induction (neo-adjuvant) chemotherapy: systemic and arterial delivery techniques and their clinical applications. Aust N Z J Surg. 1995;65(10):699–707.

    Article  CAS  PubMed  Google Scholar 

  37. Szachowicz-Petelska B, Sulkowski S, Figaszewski ZA. Altered membrane free unsaturated fatty acid composition in human colorectal cancer tissue. Mol Cell Biochem. 2007;294(1–2):237–42. doi:10.1007/s11010-006-9264-x.

    Article  CAS  PubMed  Google Scholar 

  38. Cooper I, Sasson K, Teichberg VI, Schnaider-Beeri M, Fridkin M, Shechter Y. Peptide derived from HIV-1 TAT protein destabilizes a monolayer of endothelial cells in an in vitro model of the blood-brain barrier and allows permeation of high molecular weight proteins. J Biol Chem. 2012;287(53):44676–83. doi:10.1074/jbc.M112.395384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Joshi.

Ethics declarations

Ethical standards

All the experiments reported comply with the current laws of the USA. All the experiments were approved by the Columbia University Institutional Review Board and the Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the National Cancer Institute at the National Institutes of Health RO1-CA-138643.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Cooke, J.R.N., Chan, D.K.W. et al. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv. and Transl. Res. 6, 225–233 (2016). https://doi.org/10.1007/s13346-016-0294-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0294-y

Keywords

Navigation