Skip to main content

Advertisement

Log in

Computational pharmacokinetic rationale for intra-arterial delivery to the brain

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Intra-arterial (IA) drug delivery has been proposed for the treatment of a wide range of brain diseases, including malignant brain tumors. However, pharmacokinetic optimization for IA drug delivery to the brain remains a challenge. In this report, we apply and expand the well-established Dedrick model of IA drug delivery to the brain and test the effects of modifying drug and delivery parameters. These simulations show that altering the properties of candidate drugs and physiological variables can have profound effects on regional deposition after IA injections. We show that drug and physiological optimization aimed at rapid drug extraction and sustained retention is necessary to maximize regional deposition after of IA injections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Joshi S, Ellis JA, Emala CW. Revisiting intra-arterial drug delivery for treating brain diseases or is it “déjà- vu, all over again”? J Neuroanaesthesiol Crit Care. 2014;1(2):108–15.

    Article  Google Scholar 

  2. Ellis JA, Banu M, Hossain SS, Singh-Moon R, Lavine SD, Bruce JN, et al. Reassessing the role of intra-arterial drug delivery for glioblastoma multiforme treatment. J Drug Deliv. 2015;2015:405735. doi:10.1155/2015/405735.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Joshi S, Ellis JA, Ornstein E, Bruce JN. Intraarterial drug delivery for glioblastoma mutiforme: will the phoenix rise again? J Neuro-Oncol. 2015;124(3):333–43. doi:10.1007/s11060-015-1846-6.

    Article  CAS  Google Scholar 

  4. Joshi S, Emala CW, Pile-Spellman J. Intra-arterial drug delivery: a concise review. J Neurosurg Anesthesiol. 2007;19(2):111–9.

    Article  PubMed  Google Scholar 

  5. Joshi S, Meyers PM, Ornstein E. Intracarotid delivery of drugs: the potential and the pitfalls. Anesthesiology. 2008;109(3):543–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab. 1997;17(7):713–31.

    Article  CAS  PubMed  Google Scholar 

  7. Neuwelt E. Implications of the blood-brain-barrier and its manipulation. Plenum New York. 1988;223-60.

  8. Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  9. Greig NH, Daly EM, Sweeney DJ, Rapoport SI. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother Pharmacol. 1990;25(5):320–5.

    Article  CAS  PubMed  Google Scholar 

  10. Pardridge WM. Lipid mediated transport and carrier-mediated transport. In: Pardridge WM, editor. Brain drug targeting: the future of drug development. Cambridge: Cambridge University Press; 2010. p. 36–81.

    Google Scholar 

  11. Jones DR, Hall SD, Jackson EK, Branch RA, Wilkinson GR. Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. J Pharmacol Exp Ther. 1988;245(3):816–22.

    CAS  PubMed  Google Scholar 

  12. Eckman WW, Patlak CS, Fenstermacher JD. A critical evaluation of the principles governing the advantages of intra-arterial infusions. J Pharmacokinet Biopharm. 1974;2(3):257–85.

    Article  CAS  PubMed  Google Scholar 

  13. Dedrick RL. Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst. 1988;80(2):84–9.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Shah S, Tan J. Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol. 2012;1:66–83.

    Article  CAS  Google Scholar 

  15. Hossain S, Chowdhury EH, Akaike T. Nanoparticles and toxicity in therapeutic delivery: the ongoing debate. Ther Deliv. 2011;2(2):125–32.

    Article  PubMed  Google Scholar 

  16. Hossain SS, Hughes TJ, Decuzzi P. Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomech Model Mechanobiol. 2013. doi:10.1007/s10237-013-0520-1.

    PubMed  PubMed Central  Google Scholar 

  17. Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, et al. In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine. 2013;8(3):343–57. doi:10.2217/nnm.12.124.

    Article  CAS  PubMed  Google Scholar 

  18. Gallo JM, Vicini P, Orlansky A, Li S, Zhou F, Ma J, et al. Pharmacokinetic model-predicted anticancer drug concentrations in human tumors. Clin Cancer Res : Off J Am Assoc Cancer Res. 2004;10(23):8048–58. doi:10.1158/1078-0432.CCR-04-0822.

    Article  CAS  Google Scholar 

  19. Joshi S, Singh-Moon R, Wang M, Bruce JN, Bigio IJ, Mayevsky A. Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection. Brain Res. 2014;1549:42–51. doi:10.1016/j.brainres.2013.12.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen J, Cooke JR, Ellis JA, Deci M, Emala CW, Bruce JN, et al. Cationizable lipid micelles as vehicles for intraarterial glioma treatment. J Neuro-Oncol. 2016. doi:10.1007/s11060-016-2088-y.

    Google Scholar 

  21. Raghunand N, Mahoney BP, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol. 2003;66(7):1219–29.

    Article  CAS  PubMed  Google Scholar 

  22. Joshi S, Young WL, Pile-Spellman J, Duong DH, Vang MC, Hacein-Bey L, et al. The feasibility of intracarotid adenosine for the manipulation of human cerebrovascular resistance. Anesth Analg. 1998;87:1291–8.

    CAS  PubMed  Google Scholar 

  23. Joshi S, Hartl R, Wang M, Feng L, Hoh D, Sciacca RR, et al. The acute cerebrovascular effects of intracarotid adenosine in nonhuman primates. Anesth Analg. 2003;97(1):231–7.

    Article  CAS  PubMed  Google Scholar 

  24. Joshi S, Duong H, Mangla S, Wang M, Libow AD, Popilskis SJ, et al. In nonhuman primates intracarotid adenosine, but not sodium nitroprusside. Increases Cerebral Blood Flow Anesth Analg. 2002;94(2):393–9.

    CAS  PubMed  Google Scholar 

  25. Joshi S, Wang M, Etu JJ, Nishanian EV, Pile-Spellman J. Cerebral blood flow affects dose requirements of intracarotid propofol for electrocerebral silence. Anesthesiology. 2006;104(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  26. Joshi S, Wang M, Etu JJ, Pile-Spellman J. Reducing cerebral blood flow increases the duration of electroencephalographic silence by intracarotid thiopental. Anesth Analg. 2005;101(3):851–8.

    Article  CAS  PubMed  Google Scholar 

  27. Joshi S, Wang M, Etu JJ, Suckow RF, Cooper TB, Feinmark SJ, et al. Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. J Neuro-Oncol. 2007.

  28. Joshi S, Singh-Moon RP, Wang M, Chaudhuri DB, Holcomb M, Straubinger NL, et al. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neuro-Oncol. 2014. doi:10.1007/s11060-014-1421-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Joshi.

Ethics declarations

All experiments reported comply with the current laws of the USA. All experiments were approved by the Columbia University Institutional Review Board.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The study was funded by the National Cancer Institute at the National Institutes of Health RO1-CA-138643.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooke, J.N.R., Ellis, J.A., Hossain, S. et al. Computational pharmacokinetic rationale for intra-arterial delivery to the brain. Drug Deliv. and Transl. Res. 6, 622–629 (2016). https://doi.org/10.1007/s13346-016-0319-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0319-6

Keywords

Navigation