Skip to main content

Advertisement

Log in

Breast intraductal nanoformulations for treating ductal carcinoma in situ II: Dose de-escalation using a slow releasing/slow bioconverting prodrug strategy

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Ductal carcinoma in situ (DCIS) represents approximately 20–25% of newly diagnosed breast cancers. DCIS is treated by surgery and possibly radiotherapy. Chemotherapy is only used as adjuvant or neoadjuvant therapy but not as primary therapy. The present study investigated the intraductal administration of Ciclopirox (CPX) formulated in nanosuspensions (NSs) or nanoparticles (NPs) to treat DCIS locally in a Fischer 344 rat model orthotopically implanted with 13762 Mat B III cells. Slow converting esterase responsive CPX prodrugs (CPDs) were successfully synthesized at high purity (> 95%) by directly acetylating the hydroxyl group or by appending a self-immolative linker between CPX and a phenolic ester. Direct esterification CPDs were not sufficiently stable so self-immolative CPDs were formulated in NSs and NPs. Prodrug release was evaluated from poly(lactic-co-glycolic acid) NPs, and CPD4 demonstrated the slowest release rate with the rank order of CPD2 (R = methyl) > CPD3 (R = t-butyl) > CPD4 (R = phenyl). Intraductally administered CPX NS, CPD4 NS, and an innovative mixture of CDP4 NS and NPs (at 1 mg CPX equivalent/duct) demonstrated significant (p < 0.05) in vivo anti-tumor efficacy compared with immediate release (IR) CPX NS and non-treated controls. CPX mammary persistence at 6 h and 48 h after CPD4 NS or NP administration was also greater than after the immediate release CPX NS. A strong correlation between CPX mammary persistence and efficacy is demonstrated. In conclusion, nanoformulations utilizing a slow releasing/slow bioconverting CPX prodrug delivery strategy resulted in significant dose de-escalation (~ five fold) while maintaining anti-tumor efficacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Silverstein MJ. Ductal carcinoma in situ of the breast. Annu Rev Med. 2000;51:17–32. https://doi.org/10.1146/annurev.med.51.1.17.

    Article  CAS  PubMed  Google Scholar 

  2. Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med. 2004;350(14):1430–41. https://doi.org/10.1056/NEJMra031301.

    Article  CAS  PubMed  Google Scholar 

  3. Ernster VL, Ballard-Barbash R, Barlow WE, Zheng Y, Weaver DL, Cutter G, et al. Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst. 2002;94(20):1546–54.

    Article  Google Scholar 

  4. Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, et al. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994;11(3):167–80.

    CAS  PubMed  Google Scholar 

  5. Scott MA, Lagios MD, Axelsson K, Rogers LW, Anderson TJ, Page DL. Ductal carcinoma in situ of the breast: reproducibility of histological subtype analysis. Hum Pathol. 1997;28(8):967–73.

    Article  CAS  Google Scholar 

  6. Consensus conference on the classification of ductal carcinoma in situ. Hum Pathol. 1997;28(11):1221–5.

  7. Warnberg F, Casalini P, Nordgren H, Bergkvist L, Holmberg L, Menard S. Ductal carcinoma in situ of the breast: a new phenotype classification system and its relation to prognosis. Breast Cancer Res Treat. 2002;73(3):215–21.

    Article  CAS  Google Scholar 

  8. Barrio AV, Van Zee KJ. Controversies in the treatment of ductal carcinoma in situ. Annu Rev Med. 2017;68:197–211. https://doi.org/10.1146/annurev-med-050715-104920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005;103(12):2481–4. https://doi.org/10.1002/cncr.21069.

    Article  PubMed  Google Scholar 

  10. Lee RJ, Vallow LA, McLaughlin SA, Tzou KS, Hines SL, Peterson JL. Ductal carcinoma in situ of the breast. Int J Surg Oncol. 2012;2012:123549. https://doi.org/10.1155/2012/123549.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Talamonti MS. Management of ductal carcinoma in situ. Semin Surg Oncol. 1996;12(5):300–13. https://doi.org/10.1002/(SICI)1098-2388(199609/10)12:5%3c300::AID-SSU4%3e3.0.CO;2-H.

    Article  CAS  PubMed  Google Scholar 

  12. Soran A, Vogel VG. Optimal management of primary breast cancer. Breast J. 1999;5(2):81–93.

    Article  Google Scholar 

  13. Leonard GD, Swain SM. Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst. 2004;96(12):906–20.

    Article  Google Scholar 

  14. Murata S, Kominsky SL, Vali M, Zhang Z, Garrett-Mayer E, Korz D, et al. Ductal access for prevention and therapy of mammary tumors. Cancer Res. 2006;66(2):638–45. https://doi.org/10.1158/0008-5472.CAN-05-4329.

    Article  CAS  PubMed  Google Scholar 

  15. Stearns V, Mori T, Jacobs LK, Khouri NF, Gabrielson E, Yoshida T et al. Preclinical and clinical evaluation of intraductally administered agents in early breast cancer. Sci Transl Med. 2011;3(106):106ra8. https://doi.org/10.1126/scitranslmed.3002368.

  16. Flanagan M, Love S, Hwang ES. Status of intraductal therapy for ductal carcinoma in situ. Curr Breast Cancer Rep. 2010;2(2):75–82. https://doi.org/10.1007/s12609-010-0015-3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Love SM, Barsky SH. Anatomy of the nipple and breast ducts revisited. Cancer. 2004;101(9):1947–57. https://doi.org/10.1002/cncr.20559.

    Article  PubMed  Google Scholar 

  18. Gu Z, Al-Zubaydi F, Adler D, Li S, Johnson S, Prasad P, et al. Evaluation of intraductal delivery of poly(ethylene glycol)-doxorubicin conjugate nanocarriers for the treatment of ductal carcinoma in situ (DCIS)-like lesions in rats. J Interdiscip Nanomed. 2018;3(3):146–59. https://doi.org/10.1002/jin2.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okugawa H, Yamamoto D, Uemura Y, Sakaida N, Tanano A, Tanaka K, et al. Effect of perductal paclitaxel exposure on the development of MNU-induced mammary carcinoma in female S-D rats. Breast Cancer Res Treat. 2005;91(1):29–34. https://doi.org/10.1007/s10549-004-6455-6.

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho VFM, Salata GC, de Matos JKR, Costa-Fernandez S, Chorilli M, Steiner AA, et al. Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intraductal administration of piplartine (piperlongumine) and mammary tissue targeting. Int J Pharm. 2019;567:118460. https://doi.org/10.1016/j.ijpharm.2019.118460.

    Article  CAS  PubMed  Google Scholar 

  21. Migotto A, Carvalho VFM, Salata GC, da Silva FWM, Yan CYI, Ishida K, et al. Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Delivery. 2018;25(1):654–67. https://doi.org/10.1080/10717544.2018.1440665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Love SM, Zhang B, Zhang W, Zhang B, Yang H, Rao J. Local drug delivery to the breast: a phase I study of breast cytotoxic agent administration prior to mastectomy. BMC Proceedings. 2009;3:S29.

    Article  Google Scholar 

  23. Love SM, Zhang W, Gordon EJ, Rao J, Yang H, Li J, et al. A feasibility study of the intraductal administration of chemotherapy. Cancer Prev Res (Phila). 2013;6(1):51–8. https://doi.org/10.1158/1940-6207.CAPR-12-0228.

    Article  CAS  Google Scholar 

  24. Mahoney ME, Gordon EJ, Rao JY, Jin Y, Hylton N, Love SM. Intraductal therapy of ductal carcinoma in situ: a presurgery study. Clin Breast Cancer. 2013;13(4):280–6. https://doi.org/10.1016/j.clbc.2013.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Groot JS, van Diest PJ, van Amersfoort M, Vlug EJ, Pan X, Ter Hoeve ND, et al. Intraductal cisplatin treatment in a BRCA-associated breast cancer mouse model attenuates tumor development but leads to systemic tumors in aged female mice. Oncotarget. 2017;8(37):60750–63. https://doi.org/10.18632/oncotarget.18490.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu Z, Gao D, Al-Zubaydi F, Li S, Singh Y, Rivera K, et al. The effect of size and polymer architecture of doxorubicin-poly(ethylene) glycol conjugate nanocarriers on breast duct retention, potency and toxicity. Eur J Pharm Sci. 2018. https://doi.org/10.1016/j.ejps.2018.04.033.

    Article  PubMed  Google Scholar 

  27. Singh Y, Gao D, Gu Z, Li S, Rivera KA, Stein S, et al. Influence of molecular size on the retention of polymeric nanocarrier diagnostic agents in breast ducts. Pharm Res. 2012;29(9):2377–88. https://doi.org/10.1007/s11095-012-0763-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh Y, Gao D, Gu Z, Li S, Stein S, Sinko PJ. Noninvasive detection of passively targeted poly(ethylene glycol) nanocarriers in tumors. Mol Pharm. 2012;9(1):144–55. https://doi.org/10.1021/mp2003913.

    Article  CAS  PubMed  Google Scholar 

  29. Love SM, Zhang B, Zhang W, Yang H, Rao J. Local drug delivery to the breast: a phase I study of breast cytotoxic agent administration prior to mastectomy. BMC Proc. 2009;3:S29. https://doi.org/10.1186/1753-6561-3-S5-S29.

    Article  PubMed Central  Google Scholar 

  30. Al-Zubaydi F, Gao D, Kakkar D, Li S, Adler D, Holloway J, et al. Breast intraductal nanoformulations for treating ductal carcinoma in situ I: Exploring metal-ion complexation to slow ciclopirox release, enhance mammary persistence and efficacy. J Control Release. 2020;323:71–82. https://doi.org/10.1016/j.jconrel.2020.04.016.

    Article  CAS  PubMed  Google Scholar 

  31. Afrimzon E, Deutsch A, Shafran Y, Zurgil N, Sandbank J, Pappo I, et al. Intracellular esterase activity in living cells may distinguish between metastatic and tumor-free lymph nodes. Clin Exp Metas. 2008;25(3):213–24. https://doi.org/10.1007/s10585-007-9135-1.

    Article  CAS  Google Scholar 

  32. Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Delivery. 2019;26(1):416–32. https://doi.org/10.1080/10717544.2019.1588424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, Shang C, Wang M, Shen T, Kong L, Yu C, et al. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochem Pharmacol. 2016;116:39–50. https://doi.org/10.1016/j.bcp.2016.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou H, Shen T, Luo Y, Liu L, Chen W, Xu B, et al. The antitumor activity of the fungicide ciclopirox. Int J Cancer. 2010;127(10):2467–77. https://doi.org/10.1002/ijc.25255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu J, Liu H, Zhang G, Gu L, Zhang Y, Gao J, et al. Antileukemia effect of ciclopirox olamine is mediated by downregulation of intracellular ferritin and inhibition beta-Catenin-c-Myc signaling pathway in glucocorticoid resistant T-ALL cell lines. PLoS ONE. 2016;11(8):e0161509. https://doi.org/10.1371/journal.pone.0161509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mihailidou C, Papakotoulas P, Papavassiliou AG, Karamouzis MV. Superior efficacy of the antifungal agent ciclopirox olamine over gemcitabine in pancreatic cancer models. Oncotarget. 2018;9(12):10360–74. https://doi.org/10.18632/oncotarget.23164.

    Article  PubMed  Google Scholar 

  37. Eberhard Y, McDermott SP, Wang X, Gronda M, Venugopal A, Wood TE, et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood. 2009;114(14):3064–73. https://doi.org/10.1182/blood-2009-03-209965.

    Article  CAS  PubMed  Google Scholar 

  38. Kim Y, Schmidt M, Endo T, Lu D, Carson D, Schmidt-Wolf IG. Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model. vivo (Athens, Greece). 2011;25(6):887–93.

    CAS  Google Scholar 

  39. Memin E, Hoque M, Jain MR, Heller DS, Li H, Cracchiolo B, et al. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res. 2014;74(2):552–62. https://doi.org/10.1158/0008-5472.Can-13-0474.

    Article  CAS  PubMed  Google Scholar 

  40. Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L, et al. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am J Hematol. 2014a;89(4):363–8. https://doi.org/10.1002/ajh.23640.

    Article  CAS  PubMed  Google Scholar 

  41. Weir SJ, Wood R, Baltezor MJ, Reed G, Brinker AE, Ham T et al. Pharmacokinetics of ciclopirox prodrug, a novel agent for the treatment of bladder cancer, in animals and humans. Journal of Clinical Oncology. 2019;37(15_suppl):e14705-e. https://doi.org/10.1200/JCO.2019.37.15_suppl.e14705.

  42. Weir SJ, Wood R, Schorno K, Brinker AE, Ramamoorthy P, Heppert K, et al. Preclinical pharmacokinetics of fosciclopirox, a novel treatment of urothelial cancers, in rats and dogs. J Pharmacol Exp Ther. 2019;370(2):148. https://doi.org/10.1124/jpet.119.257972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Applied Nanoscience. 2014;4(2):189–97. https://doi.org/10.1007/s13204-012-0188-3.

    Article  CAS  Google Scholar 

  44. Luque de Castro MD, Priego-Capote F. Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem. 2007;14(6):717–24. https://doi.org/10.1016/j.ultsonch.2006.12.004.

  45. Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10(8):3076–89. https://doi.org/10.1021/mp400154a.

    Article  CAS  PubMed  Google Scholar 

  46. Perez C, Daniel KB, Cohen SM. Evaluating prodrug strategies for esterase-triggered release of alcohols. ChemMedChem. 2013;8(10):1662–7. https://doi.org/10.1002/cmdc.201300255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coppi G, Silingardi S, Girardello R, De Aloysio D, Manzardo S. Pharmacokinetics of ciclopirox olamine after vaginal application to rabbits and patients. J Chemother. 1993;5(5):302–6. https://doi.org/10.1080/1120009X.1993.11755468.

    Article  CAS  PubMed  Google Scholar 

  48. Lehr K-H, Damm P. Quantification of ciclopirox by high-performance liquid chromatography after pre-column derivatization: an example of efficient clean-up using silica-bonded cyano phases. J Chromatogr B Biomed Sci Appl. 1985;339:451–6. https://doi.org/10.1016/S0378-4347(00)84680-0.

    Article  CAS  Google Scholar 

  49. Flanigan RC, Pavlik EJ, Van Nagell JR, Keaton K, Kenady DE. Proliferation, esterase activity, and propidium iodide exclusion in urologic tumor cells after in vitro exposure to chemotherapeutic agents. The Journal of urology. 1986;135(5):1091–100.

    Article  CAS  Google Scholar 

  50. Shen T, Shang C, Zhou H, Luo Y, Barzegar M, Odaka Y, et al. Ciclopirox inhibits cancer cell proliferation by suppression of Cdc25A. Genes Cancer. 2017;8(3–4):505–16. https://doi.org/10.18632/genesandcancer.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S. Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes & cancer. 2018;9(1–2):39–52. https://doi.org/10.18632/genesandcancer.166.

    Article  CAS  Google Scholar 

  52. Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L, et al. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am J Hematol. 2014b;89(4):363–8. https://doi.org/10.1002/ajh.23640.

    Article  CAS  PubMed  Google Scholar 

  53. Weir SJ, Ranjarajan P, Wood R, Schorno K, Ramamoorthy P, Rajweski L, et al. Abstract 5882: bench-to-bedside translation of ciclopirox prodrug for the treatment of non-muscle invasive and muscle-invasive bladder cancer. Can Res. 2018;78(13 Supplement):5882. https://doi.org/10.1158/1538-7445.AM2018-5882.

    Article  Google Scholar 

  54. Simpson JF, Quan DE, O’Malley F, Odom-Maryon T, Clarke PE. Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. Am J Pathol. 1997;151(1):161–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnes N, Haywood P, Flint P, Knox WF, Bundred NJ. Survivin expression in in situ and invasive breast cancer relates to COX-2 expression and DCIS recurrence. Br J Cancer. 2006;94(2):253–8. https://doi.org/10.1038/sj.bjc.6602932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jacobs L, Sukumar S, Stearns V. Intraductal therapy for the prevention of breast cancer. Curr Opin Investig Drugs. 2010;11(6):646–52.

    PubMed  Google Scholar 

  57. Bala V, Rao S, Li P, Wang S, Prestidge CA. Lipophilic prodrugs of SN38: synthesis and in vitro characterization toward oral chemotherapy. Mol Pharm. 2016;13(1):287–94. https://doi.org/10.1021/acs.molpharmaceut.5b00785.

    Article  CAS  PubMed  Google Scholar 

  58. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth <em>in vivo</em>. 2004;101(38):13756–61. https://doi.org/10.1073/pnas.0404727101%JProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.

    Article  CAS  Google Scholar 

  59. Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002;102(12):4501–23. https://doi.org/10.1021/cr000033x.

    Article  CAS  PubMed  Google Scholar 

  60. Sabit H, Dahan A, Sun J, Provoda CJ, Lee KD, Hilfinger JH, et al. Cytomegalovirus protease targeted prodrug development. Mol Pharm. 2013;10(4):1417–24. https://doi.org/10.1021/mp3007067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laschke MW, Vorsterman van Oijen AE, Korbel C, Scheuer C, Menger MD. 4-hydroxybenzyl alcohol: a novel inhibitor of tumor angiogenesis and growth. Life sciences. 2013;93(1):44–50. https://doi.org/10.1016/j.lfs.2013.05.022.

  62. Luo L, Kim SW, Lee HK, Kim ID, Lee H, Lee JK. Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS ONE. 2017;12(5):e0177322. https://doi.org/10.1371/journal.pone.0177322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winter AN, Brenner MC, Punessen N, Snodgrass M, Byars C, Arora Y et al. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxidative medicine and cellular longevity. 2017;2017:6297080-. https://doi.org/10.1155/2017/6297080.

  64. Keles H, Naylor A, Clegg F, Sammon C. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab. 2015;119:228–41. https://doi.org/10.1016/j.polymdegradstab.2015.04.025.

    Article  CAS  Google Scholar 

  65. Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA- based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology. 2016;7:185.

    Article  Google Scholar 

  66. Wang D-F, Rong W-T, Lu Y, Hou J, Qi S-S, Xiao Q, et al. TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS Appl Mater Interfaces. 2015;7(7):3888–901. https://doi.org/10.1021/am508340m.

    Article  CAS  PubMed  Google Scholar 

  67. Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology. 2014;5:159.

    PubMed  PubMed Central  Google Scholar 

  68. Joseph MK, Islam M, Reineke J, Hildreth M, Woyyengo T, Pilatzki A, Baride A, Perumal O. Intraductal drug delivery to the breast: effect of particle size and formulation on breast duct and lymph node retention. Mol Pharm. 2020;2:441–52.

    Google Scholar 

Download references

Funding

This work was supported by the Parke-Davis Endowed Chair.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the article. Firas Al-Zubaydi—writing and original draft preparation; Dayuan Gao, Jenifer Holloway—formal analysis and investigation; Dipti Kakkar—writing, editing, and critical revision of intellectual content; Nancy Chan, Shicha Kumar, Hatem Sabaawy, Susan Love—methodology; Shike Li, Zoltan Szekely—resources; Patrick J Sinko—conceptualization and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Patrick J. Sinko.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

No human subjects were involved in the studies included in this manuscript. All animal studies were approved by Rutgers IACUC.

Consent for publication

All authors have given their consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1432 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zubaydi, F., Gao, D., Kakkar, D. et al. Breast intraductal nanoformulations for treating ductal carcinoma in situ II: Dose de-escalation using a slow releasing/slow bioconverting prodrug strategy. Drug Deliv. and Transl. Res. 12, 240–256 (2022). https://doi.org/10.1007/s13346-021-00903-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00903-y

Keywords

Navigation