Skip to main content
Log in

Épuration extrarénale en réanimation adulte et pédiatrique. Recommandations formalisées d’experts sous l’égide de la Société de réanimation de langue française (SRLF), avec la participation de la Société française d’anesthésie-réanimation (Sfar), du Groupe francophone de réanimation et urgences pédiatriques (GFRUP) et de la Société francophone de dialyse (SFD)

Société de réanimation de langue française. Experts Recommandations

Renal replacement therapy adult and children intensive care unit

  • Référentiel / Guidelines
  • Published:
Réanimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Clec’h C, Gonzalez F, Lautrette A, et al (2011) Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Critical Care 15:R128

    Google Scholar 

  2. Disease K (2012) Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter Suppl 2:1–138

    Google Scholar 

  3. Poukkanen M, Koskenkari J, Vaara ST, et al (2014) Variation in the use of renal replacement therapy in patients with septic shock: a substudy of the prospective multicenter observational FINNAKI study. Crit Care 18:R26

    Google Scholar 

  4. Atkins D, Best D, Briss PA, et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490

    PubMed  Google Scholar 

  5. Guyatt GH, Oxman AD, Vist GE, et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–6

    PubMed Central  PubMed  Google Scholar 

  6. Fitch K, Bernstein S, Aguilar M, et al (2001) The RAND/UCLA appropriateness method user’s manual. Santa Monica, CA

    Google Scholar 

  7. Lameire N, van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–30

    CAS  PubMed  Google Scholar 

  8. Karvellas CJ, Farhat MR, Sajjad I, et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 15:R72

    Google Scholar 

  9. Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, et al (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30:2205–11

    PubMed  Google Scholar 

  10. Sugahara S, Suzuki H (2004) Early start on continuous hemodialysis therapy improves survival rate in patients with acute renal failure following coronary bypass surgery. Hemodial Int 8:320–5

    PubMed  Google Scholar 

  11. Payen D, Mateo J, Cavaillon JM, et al (2009) Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med 37:803–10

    PubMed  Google Scholar 

  12. Liu KD, Himmelfarb J, Paganini E, et al (2006) Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 1:915–9

    CAS  PubMed  Google Scholar 

  13. Bagshaw SM, George C, Gibney RTN, Bellomo R (2008) A multicenter evaluation of early acute kidney injury in critically ill trauma patients. Ren Fail 30:581–9

    PubMed  Google Scholar 

  14. Bagshaw SM, Uchino S, Bellomo R, et al (2009) Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J Crit Care 24:129–40

    PubMed  Google Scholar 

  15. Gettings LG, Reynolds HN, Scalea T (1999) Outcome in posttraumatic acute renal failure when continuous renal replacement therapy is applied early vs late. Intensive Care Med 25:805–13

    CAS  PubMed  Google Scholar 

  16. Elahi MM, Lim MY, Joseph RN, et al (2004) Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardio-Thorac Surg 26:1027–31

    Google Scholar 

  17. Demirkiliç U, Kuralay E, Yenicesu M, et al (2004) Timing of replacement therapy for acute renal failure after cardiac surgery. J Card Surg 19:17–20

    PubMed  Google Scholar 

  18. Andrade L, Cleto S, Seguro AC (2007) Door-to-dialysis time and daily hemodialysis in patients with leptospirosis: impact on mortality. Clin J Am Soc Nephrol 2:739–44

    PubMed  Google Scholar 

  19. Wu VC, Ko WJ, Chang HW, et al (2007) Early renal replacement therapy in patients with postoperative acute liver failure associated with acute renal failure: effect on postoperative outcomes. J Am Coll Surg 205:266–76

    PubMed  Google Scholar 

  20. Manché A, Casha A, Rychter J, et al (2008) Early dialysis in acute kidney injury after cardiac surgery. Interact Cardiovasc Thorac Surg 7:829–32

    PubMed  Google Scholar 

  21. Iyem H, Tavli M, Akcicek F, Büket S (2009) Importance of early dialysis for acute renal failure after an open-heart surgery. Hemodial Int 13:55–61

    PubMed  Google Scholar 

  22. Shiao CC, Wu VC, Li WY, et al (2009) Late initiation of renal replacement therapy is associated with worse outcomes in acute kidney injury after major abdominal surgery. Crit Care 13:R171

    Google Scholar 

  23. Carl DE, Grossman C, Behnke M, et al (2010) Effect of timing of dialysis on mortality in critically ill, septic patients with acute renal failure. Hemodial Int 14:11–7

    PubMed  Google Scholar 

  24. Gillespie RS, Seidel K, Symons JM (2004) Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol 19:1394–9

    PubMed  Google Scholar 

  25. Foland JA, Fortenberry JD, Warshaw BL, et al (2004) Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med 32:1771–6

    PubMed  Google Scholar 

  26. Goldstein SL, Somers MJ, Baum MA, et al (2005) Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 67:653–8

    PubMed  Google Scholar 

  27. Hayes LW, Oster RA, Tofil NM, Tolwani AJ (2009) Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care 24:394–400

    PubMed  Google Scholar 

  28. Sutherland SM, Zappitelli M, Alexander SR, et al (2010) Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis 55:316–25

    PubMed  Google Scholar 

  29. Symons JM, Chua AN, Somers MJ, et al (2007) Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol 2:732–8

    PubMed  Google Scholar 

  30. Legrand M, Darmon M, Joannidis M, Payen D (2013) Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med 39:101–8

    PubMed  Google Scholar 

  31. Bellomo R, Cass A, Cole L, et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–38

    PubMed  Google Scholar 

  32. Palevsky PM, Zhang JH, O’Connor TZ, et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20

    CAS  PubMed  Google Scholar 

  33. Clec’h C, Darmon M, Lautrette A, et al (2012) Efficacy of renal replacement therapy in critically ill patients: a propensity analysis. Crit Care 16:R236

    Google Scholar 

  34. O’Grady NP, Alexander M, Burns LA, et al (2011) Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 52:e162–e93

    PubMed Central  PubMed  Google Scholar 

  35. Pannu N, James M, Hemmelgarn B, Klarenbach S (2013) Association between AKI, recovery, of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8:194–202

    PubMed Central  PubMed  Google Scholar 

  36. Coca S, Yusuf B, Shlipak MG, et al (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta analysis. Am J Kidney Dis 53:961–73

    PubMed Central  PubMed  Google Scholar 

  37. Souweine B, Traore O, Aublet-Cuvelier B, et al (1999) Dialysis and central venous catheter infections in critically ill patients: results of a prospective study. Crit Care Med 27:2394–8

    CAS  PubMed  Google Scholar 

  38. Souweine B, Liotier J, Heng AE, et al (2006) Catheter colonization in acute renal failure patients: comparison of central venous and dialysis catheters. Am J Kidney Dis 47:879–87

    PubMed  Google Scholar 

  39. Parienti JJ, du Cheyron D, Timsit JF, et al (2012) Meta-analysis of subclavian insertion and nontunneled central venous catheterassociated infection risk reduction in critically ill adults. Crit Care Med 40:1627–34

    PubMed  Google Scholar 

  40. Marik PE, Flemmer M, Harrison W (2012) The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med 40:2479–85

    PubMed  Google Scholar 

  41. Parienti JJ, Thirion M, Megarbane B, et al (2008) Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 299:2413–22

    CAS  PubMed  Google Scholar 

  42. Dugué AE, Levesque SP, Fischer MO, et al (2012) Vascular access sites for acute renal replacement in intensive care units. Clin J Am Soc Nephrol 7:70–7

    PubMed Central  PubMed  Google Scholar 

  43. Parienti JJ, Megarbane B, Fischer MO, et al (2010) Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med 38:1118–25

    PubMed  Google Scholar 

  44. Leblanc M, Fedak S, Mokris G, Paganini EP (1996) Blood recirculation in temporary central catheters for acute hemodialysis. Clin Nephrol 45:315–9

    CAS  PubMed  Google Scholar 

  45. Little MA, Conlon PJ, Walshe JJ (2000) Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis 36:1135–9

    CAS  PubMed  Google Scholar 

  46. Sutherland SM, Alexander SR (2012) Continuous renal replacement therapy in children. Pediatr Nephrol 27:2007–16

    PubMed  Google Scholar 

  47. Hackbarth R, Bunchman TE, Chua AN, et al (2007) The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs 30:1116–21

    CAS  PubMed  Google Scholar 

  48. Merouani A, Flechelles O, Jouvet P (2012) Acute kidney injury in children. Minerva Pediatr 64:121–33

    CAS  PubMed  Google Scholar 

  49. Depner TA (2001) Catheter performance. Semin Dial 14:425–31

    CAS  PubMed  Google Scholar 

  50. Little MA, Conlon PJ, Walshe JJ (2000) Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis 36:1135–9

    CAS  PubMed  Google Scholar 

  51. Hind D, Calvert N, McWilliams R, et al (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 327:361

    PubMed Central  PubMed  Google Scholar 

  52. Recommandations du NICE: www.nice.org.uk

  53. Recommendations du CDC: 2011 Guidelines for the Prevention of Intravascular Catheter-Related Infections: http://www.cdc.gov/hicpac/bsi/04-bsi-background-info-2011.html

  54. Rabindranath KS, Kumar E, Shail R, Vaux E (2011) Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 58:964–70

    PubMed  Google Scholar 

  55. Bansal R, Agarwal SK, Tiwari SC, Dash SC (2005) A prospective randomized study to compare ultrasound-guided with non-ultrasound-guided double lumen internal jugular catheter insertion as a temporary hemodialysis access. Ren Fail 27:561–4

    PubMed  Google Scholar 

  56. Koroglu M, Demir M, Koroglu BK (2006) Percutaneous placement of central venous catheters: comparing the anatomical landmark method with the radiologically guided technique for central venous catheterization through the internal jugular vein in emergent hemodialysis patients. Acta Radiol 47:43–7

    CAS  PubMed  Google Scholar 

  57. Nadig C, Leidig M, Schmiedeke T, Höffken B (1998) The use of ultrasound for the placement of dialysis catheters. Nephrol Dial Transplant 13:978–81

    CAS  PubMed  Google Scholar 

  58. Prabhu MV, Juneja D, Gopal PB, et al (2010) Ultrasound-guided femoral dialysis access placement: a single-center randomized trial. Clin J Am Soc Nephrol 5:235–9

    PubMed Central  PubMed  Google Scholar 

  59. Vazquez MA (2009) Vascular access for dialysis: recent lessons and new insights. Curr Opin Nephrol Hypertens 18:116–21

    PubMed  Google Scholar 

  60. Albright RC Jr, Smelser JM, McCarthy JT, et al (2000) Patient survival and renal recovery in acute renal failure: randomized comparison of cellulose acetate and polysulfone membrane dialyzers. Mayo Clin Proc 75:1141–7

    PubMed  Google Scholar 

  61. Gastaldello K1, Melot C, Kahn RJ, et al (2000) Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol Dial Transplant 15:224–30

    CAS  PubMed  Google Scholar 

  62. Himmelfarb J, Tolkoff-Rubin N, Chandran P, et al (1998) A multicenter comparison of dialysis membranes in the treatment of acute renal failure requiring dialysis. J Am Soc Nephrol 9:257–66

    CAS  PubMed  Google Scholar 

  63. Jones CH, Goutcher E, Newstead CG, et al (1998) Hemodynamics and survival of patients with acute renal failure treated by continuous dialysis with two synthetic membranes. Artif Organs 22:638–43

    CAS  PubMed  Google Scholar 

  64. Jörres A, Gahl GM, Dobis C, et al (1999) Haemodialysis-membrane biocompatibility and mortality of patients with dialysis-dependent acute renal failure: a prospective randomised multicentre trial. International Multicentre Study Group. Lancet 354:1337–41

    PubMed  Google Scholar 

  65. Kurtal H, von Herrath D, Schaefer K (1995) Is the choice of membrane important for patients with acute renal failure requiring hemodialysis? Artif Organs 19:391–4

    CAS  PubMed  Google Scholar 

  66. Ponikvar JB, Rus RR, Kenda RB, et al (2001) Low-flux versus high-flux synthetic dialysis membrane in acute renal failure: prospective randomized study. Artif Organs 25:946–50

    CAS  PubMed  Google Scholar 

  67. Romão JE Jr, Abensur H, de Castro MC, et al (1999) Effect of dialyser biocompatibility on recovery from acute renal failure after cadaver renal transplantation. Nephrol Dial Transplant 14:709–12

    PubMed  Google Scholar 

  68. Schiffl H, Lang SM, König A, et al (1994) Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet 344:570–2

    CAS  PubMed  Google Scholar 

  69. Valeri A, Radhakrishnan J, Ryan R, Powell D (1996) Biocompatible dialysis membranes and acute renal failure: a study in post-operative acute tubular necrosis in cadaveric renal transplant recipients. Clin Nephrol 46:402–9

    CAS  PubMed  Google Scholar 

  70. Woo YM, Craig AM, King BB, et al (2002) Biocompatible membranes do not promote graft recovery following cadaveric renal transplantation. Clin Nephrol 57:38–44

    CAS  PubMed  Google Scholar 

  71. Hutchison CA, Heyne N, Airia P, et al (2012) Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol Dial Transplant 27:3823–8

    CAS  PubMed  Google Scholar 

  72. Morgera S, Haase M, Kuss T, et al (2006) Pilot study on the effects of high cut-off hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit care Med 34:2099–104

    CAS  PubMed  Google Scholar 

  73. Alonso A, Lau J, Jaber BL (2008) Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst Rev (1):CD005283

    PubMed  Google Scholar 

  74. Subramanian S, Venkataraman R, Kellum JA (2002) Influence of dialysis membranes on outcomes in acute renal failure: a meta-analysis. Kidney Int 62:1819–23

    CAS  PubMed  Google Scholar 

  75. Jaber BL, Lau J, Schmid CH, et al (2002) Effect of biocompatibility of hemodialysis membranes on mortality in acute renal failure: a meta-analysis. Clin Nephrol 57:274–82

    CAS  PubMed  Google Scholar 

  76. Brunet P, Frances J, Vacher-Coponat H, et al (2011) Hemodialysis without heparin: a randomized, controlled, crossover study of two dialysis membranes (AN69ST and polysulfone F60). Int J Artif Organs 34:1165–71

    CAS  PubMed  Google Scholar 

  77. Evenepoel P, Dejagere T, Verhamme P, et al (2007) Heparin-coated polyacrylonitrile membrane versus regional citrate anticoagulation: a prospective randomized study of 2 anticoagulation strategies in patients at risk of bleeding. Am J Kidney Dis 49:642–9

    CAS  PubMed  Google Scholar 

  78. Sánchez-Canel JJ, Pons-Prades R, Salvetti ML, et al (2012) Evaluation of coagulation and anti-Xa factor when using a heparin-coated AN69ST® dialyser. Nefrologia 32:605–12

    PubMed  Google Scholar 

  79. Schetz M, Van Cromphaut S, Dubois J, Van den Berghe G (2012) Does the surface-treated AN69 membrane prolong filter survival in CRRT without anticoagulation? Intensive Care Med 38:1818–25

    CAS  PubMed  Google Scholar 

  80. Van der Voort PH, Postma SR, Kingma WP, et al (2006) Safety of citrate based hemofiltration in critically ill patients at high risk for bleeding: a comparison with nadroparin. Int J Artif Organs 29:559–63

    PubMed  Google Scholar 

  81. Thoenen M, Schmid ER, Binswanger U, et al (2002) Regional citrate anticoagulation using a citrate-based substitution solution for continuous venovenous hemofiltration in cardiac surgery patients. Wien Klin Wochenschr 114:108–14

    CAS  PubMed  Google Scholar 

  82. Mariano F, Tedeschi L, Morselli M, et al (2010) Normal citratemia and metabolic tolerance of citrate anticoagulation for hemodiafiltration in severe septic shock burn patients. Intensive Care Med 36:1735–43

    CAS  PubMed  Google Scholar 

  83. Betjes MG, van Oosterom D, van Agteren M, van de Wetering J (2007) Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol 20:602–8

    CAS  PubMed  Google Scholar 

  84. Fealy N, Baldwin I, Johnstone M, et al (2007) A pilot randomized controlled crossover study comparing regional heparinization to regional citrate anticoagulation for continuous venovenous hemofiltration. Int J Artif Organs 30:301–7

    CAS  PubMed  Google Scholar 

  85. Kutsogiannis DJ, Gibney RT, Stollery D, Gao J (2005) Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int 67:2361–7

    CAS  PubMed  Google Scholar 

  86. Monchi M, Berghmans D, Ledoux D, et al (2004) Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med 30:260–5

    PubMed  Google Scholar 

  87. Oudemans-van Straaten HM, Bosman RJ, Koopmans M, et al (2009) Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 37:545–52

    CAS  PubMed  Google Scholar 

  88. Carr JA, Silverman N (1999) The heparin-protamine interaction. A review. J Cardiovasc Surg (Torino) 40:659–66

    CAS  Google Scholar 

  89. Bunchman TE, Maxvold NJ, Barnett J, et al (2002) Pediatric hemofiltration: normocarb dialysate solution with citrate anticoagulation. Pediatr Nephrol 17:150–4

    PubMed  Google Scholar 

  90. Bunchman TE, Maxvold NJ, Brophy PD (2003) Pediatric convective hemofiltration: Normocarb replacement fluid and citrate anticoagulation. Am J Kidney Dis 42:1248–52

    PubMed  Google Scholar 

  91. Elhanan N, Skippen P, Nuthall G, et al (2004) Citrate anticoagulation in pediatric continuous venovenous hemofiltration. Pediatr Nephrol 19:208–12

    PubMed  Google Scholar 

  92. Brophy PD, Somers MJ, Baum MA, et al (2005) Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant 20:1416–21

    PubMed  Google Scholar 

  93. Chadha V, Garg U, Warady BA, Alon US (2002) Citrate clearance in children receiving continuous venovenous renal replacement therapy. Pediatr Nephrol 17:819–24

    PubMed  Google Scholar 

  94. Soltysiak J, Warzywoda A, Kocinski B, et al (2014) Citrate anticoagulation for continuous renal replacement therapy in small children. Pediatr Nephrol 29:469–75

    PubMed Central  PubMed  Google Scholar 

  95. Symons JM, Chua AN, Somers MJ, et al (2007) Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol 2:732–8

    PubMed  Google Scholar 

  96. Lim W, Cook DJ, Crowther MA (2004) Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol 15:3192–206

    PubMed  Google Scholar 

  97. Bagshaw SM, Laupland KB, Boiteau PJ, Godinez-Luna T (2005) Is regional citrate superior to systemic heparin anticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J Crit Care 20:155–61

    CAS  PubMed  Google Scholar 

  98. Balik M, Waldauf P, Plasil P, Pachl J (2005) Prostacyclin versus citrate in continuous haemodiafiltration: an observational study in patients with high risk of bleeding. Blood Purif 23:325–9

    CAS  PubMed  Google Scholar 

  99. Gabutti L, Marone C, Colucci G, et al (2002) Citrate anticoagulation in continuous venovenous hemodiafiltration: a metabolic challenge. Intensive Care Med 28:1419–25

    PubMed  Google Scholar 

  100. Hetzel GR, Schmitz M, Wissing H, et al (2011) Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant 26:232–9

    CAS  PubMed  Google Scholar 

  101. Morabito S, Pistolesi V, Tritapepe L, et al (2012) Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care 16:R111

    Google Scholar 

  102. Wu MY, Hsu YH, Bai CH, et al (2012) Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-analysis of randomized controlled trials. Am J Kidney Dis 59:810–8

    CAS  PubMed  Google Scholar 

  103. Zhang Z, Hongying N (2012) Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Med 38:20–8

    PubMed  Google Scholar 

  104. Aman J, Nurmohamed SA, Vervloet MG, Groeneveld AB (2010) Metabolic effects of citrate- vs bicarbonate-based substitution fluid in continuous venovenous hemofiltration: a prospective sequential cohort study. J Crit Care 25:120–7

    CAS  PubMed  Google Scholar 

  105. Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–7

    PubMed  Google Scholar 

  106. Rabindranath K, Adams J, Macleod AM, Muirhead N (2007) Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev Online 3:CD003773

    Google Scholar 

  107. Mehta RL, McDonald B, Gabbai FB, et al (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60:1154–63

    CAS  PubMed  Google Scholar 

  108. Vinsonneau C, Camus C, Combes A, et al (2006) Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 368:379–85

    PubMed  Google Scholar 

  109. Lins RL, Elseviers MM, Van der Niepen P, et al (2009) Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol Dial Transplant 24:512–8

    PubMed  Google Scholar 

  110. Noble JSC, Simpson K, Allison MEM (2006) Long-term quality of life and hospital mortality in patients treated with intermittent or continuous hemodialysis for acute renal and respiratory failure. Ren Fail 28:323–30

    PubMed  Google Scholar 

  111. Uehlinger DE, Jakob SM, Ferrari P, et al (2005) Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transplant 20:1630–7

    PubMed  Google Scholar 

  112. Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44:1000–7

    PubMed  Google Scholar 

  113. John S, Griesbach D, Baumgärtel M, et al (2001) Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transplant 16:320–7

    CAS  PubMed  Google Scholar 

  114. Misset B, Timsit JF, Chevret S, et al (1996) A randomized cross-over comparison of the hemodynamic response to intermittent hemodialysis and continuous hemofiltration in ICU patients with acute renal failure. Intensive Care Med 22:742–6

    CAS  PubMed  Google Scholar 

  115. Bell M, Granath F, Schön S, et al (2007) Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med 33:773–80

    PubMed  Google Scholar 

  116. Schneider AG, Bellomo R, Bagshaw SM, et al (2013) Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 39:987–97

    CAS  PubMed  Google Scholar 

  117. Ronco C, Bellomo R, Brendolan A, et al (1999) Brain density changes during renal replacement in critically ill patients with acute renal failure. Continuous hemofiltration versus intermittent hemodialysis. J Nephrol 12:173–8

    CAS  PubMed  Google Scholar 

  118. Walters RJ, Fox NC, Crum WR, et al (2001) Haemodialysis and cerebral oedema. Nephron 87:143–7

    CAS  PubMed  Google Scholar 

  119. Lin CM, Lin JW, Tsai JT, et al (2008) Intracranial pressure fluctuation during hemodialysis in renal failure patients with intracranial hemorrhage. Acta Neurochir Suppl 101:141–4

    CAS  PubMed  Google Scholar 

  120. Bhattacharya M, Dhingra D, et al (2013) Acute renal failure in children in a tertiary care center. Saudi J Kidney Transpl 24:413–7

    Google Scholar 

  121. Chan KL, Ip P, Chiu CS, Cheung YF (2003) Peritoneal dialysis after surgery for congenital heart disease in infants and young children. Ann Thorac Surg 76:1443–9

    PubMed  Google Scholar 

  122. Golej J, Kitzmueller E, Hermon M, et al (2002) Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr 161:385–9

    PubMed  Google Scholar 

  123. Madenci AL, Thiagarajan RR, Stoffan AP, et al (2012) Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg 146:334–8

    PubMed  Google Scholar 

  124. Yu JE, Park MS, Pai KS (2010) Acute peritoneal dialysis in very low birth weight neonates using a vascular catheter. Pediatr Nephrol 25:367–71

    PubMed  Google Scholar 

  125. Boigner H, Brannath W, Hermon M, et al (2004) Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann Thorac Surg 77:61–5

    PubMed  Google Scholar 

  126. Duzova A, Bakkaloglu A, Kalyoncu M, et al (2010) Etiology and outcome of acute kidney injury in children. Pediatr Nephrol 25:1453–61

    PubMed  Google Scholar 

  127. McNiece KL, Ellis EE, Drummond-Webb JJ, et al (2004) Adequacy of peritoneal dialysis in children following cardiopulmonary bypass surgery. Pediatr Nephrol 20:972–6

    Google Scholar 

  128. Warady BA, Bunchman T (2000) Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol 15:11–3

    CAS  PubMed  Google Scholar 

  129. Mel E, Davidovits M, Dagan O (2014) Long-term follow-up evaluation of renal function in patients treated with peritoneal dialysis after cardiac surgery for correction of congenital anomalies. J Thorac Cardiovasc Surg 147:451–5

    PubMed  Google Scholar 

  130. Oh G, Lau KK (2012) Characteristics of children with sporadic hemolytic uremic syndrome in a single Northern California center. Int Urol Nephrol 44:1467–72

    PubMed  Google Scholar 

  131. Fleming F, Bohn D, Edwards H (1995) Renal replacement therapy after repair of congenital heart disease in children. A comparison of hemofiltration and peritoneal dialysis. J Thorac Cardiovasc Surg 109:322–31

    CAS  PubMed  Google Scholar 

  132. Bunchman TE, McBryde KD, Mottes TE, et al (2001) Pediatric acute renal failure: outcome by modality and disease. Pediatr Nephrol 16:1067–71

    CAS  PubMed  Google Scholar 

  133. Krause I, Herman N, Cleper R, et al (2011) Impact of dialysis type on outcome of acute renal failure in children: a single-center experience. Isr Med Assoc J 13:153–6

    PubMed  Google Scholar 

  134. Phu NH, Hien TT, Mai NT, et al (2002) Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. New Engl J Med 347:895–902

    PubMed  Google Scholar 

  135. George J, Varma S, Kumar S, et al (2011) Comparing continuous venovenous hemodiafiltration and peritoneal dialysis in critically ill patients with acute kidney injury: a pilot study. Perit Dial Int 31:422–9

    PubMed  Google Scholar 

  136. Gabriel DP, Caramori JT, Martin LC, et al (2009) Continuous peritoneal dialysis compared with daily hemodialysis in patients with acute kidney injury. Perit Dial Int 29:S62–S71

    CAS  PubMed  Google Scholar 

  137. Faulhaber-Walter R, Hafer C, Jahr N, et al (2009) The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant 24:2179–86

    PubMed  Google Scholar 

  138. Palevsky PM, Zhang JH, O’Connor TZ, et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20

    CAS  PubMed  Google Scholar 

  139. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–10

    PubMed  Google Scholar 

  140. Paganini E, Tapolyai M, Goormastic M, et al (1996) Establishing a dialysis therapy/patient outcome link in intensive care unit acute dialysis for patients with acute renal failure. Am J Kidney Dis 28:S81–S9

    Google Scholar 

  141. Ronco C, Bellomo R, Homet P, et al (2000) Effects of different doses incontinuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomized trail. Lancet 356:26–30

    CAS  PubMed  Google Scholar 

  142. Saudan P, Niederberger M, De Seigneux S, et al (2006) Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 70:1312–7

    CAS  PubMed  Google Scholar 

  143. Palevsky PM, O’Connor T, Zhang JH, et al (2005) Design of the VA/NIH Acute Renal Failure Trial Network (ATN) Study: intensive versus conventional renal support in acute renal failure. Clin Trials 2:423–35

    PubMed Central  PubMed  Google Scholar 

  144. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–38

    PubMed  Google Scholar 

  145. Pichette V, Leblanc M, Bonnardeaux A, et al (1994) High dialysate flow rate continuous arteriovenous hemodialysis: a new approach for the treatment of acute renal failure and tumor lysis syndrome. Am J Kidney Dis 23:591–6

    CAS  PubMed  Google Scholar 

  146. Demirjian S, Teo BW, Guzman JA, et al (2011) Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant 26:3508–14

    CAS  PubMed  Google Scholar 

  147. Bellomo R, Cass A, Cole L, et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–38

    PubMed  Google Scholar 

  148. Bogard KN, Peterson NT, Plumb TJ, et al (2011) Antibiotic dosing during sustained low-efficiency dialysis: special considerations in adult critically ill patients. Crit Care Med 39:560–70

    CAS  PubMed  Google Scholar 

  149. Schetz M (2007) Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care 13:645–51

    PubMed  Google Scholar 

  150. Eloot S, van Biesen W, Dhondt A, et al (2008) Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int 73:765–70

    CAS  PubMed  Google Scholar 

  151. Eloot S, van Biesen W, Dhondt A, et al (2009) Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant 24:2225–32

    CAS  PubMed  Google Scholar 

  152. Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44:1000–7

    PubMed  Google Scholar 

  153. Bouchard J, Soroko SB, Chertow GM, et al (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76:422–7

    PubMed  Google Scholar 

  154. De Vriese AS, Colardyn FA, Philippé JJ, et al (1999) Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 10:846–53

    PubMed  Google Scholar 

  155. Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–7

    CAS  PubMed  Google Scholar 

  156. Boussekey N, Chiche A, Faure K, et al (2008) A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med 34:1646–53

    CAS  PubMed  Google Scholar 

  157. Zhang P, Yang Y, Lv R, et al (2012) Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transplant 27:967–73

    CAS  PubMed  Google Scholar 

  158. Joannes-Boyau O, Honore PM, Perez P, et al (2013) High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 39:1535–46

    PubMed  Google Scholar 

  159. Borthwick EM, Hill CJ, Rabindranath KS, et al (2013) High-volume haemofiltration for sepsis. Cochrane Database Syst Rev 1:CD008075

    PubMed  Google Scholar 

  160. Kumar VA, Craig M, Depner TA, Yeun JY (2000) Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis 36:294–300

    CAS  PubMed  Google Scholar 

  161. Marshall MR, Golper TA, Shaver MJ, et al (2001) Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int 60:777–85

    CAS  PubMed  Google Scholar 

  162. Kielstein JT, Kretschmer U, Ernst T, et al (2004) Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis 43:342–9

    CAS  PubMed  Google Scholar 

  163. Selby NM, MacIntyre CW (2006) A systematic review of the clinical effect of reducing dialysate fluid temperature. Nephro Dial Transplant 21:1883–98

    Google Scholar 

  164. Vincent JL, Vanherweghem JL, Degaute JP, et al (1982) Acetate-induced myocardial depression during hemodialysis for acute renal failure. Kidney Int 22:653–7

    CAS  PubMed  Google Scholar 

  165. Paganini EP, Sandy D, Moreno L, et al (1996) The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic stability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant 11:32–7

    PubMed  Google Scholar 

  166. Schortgen F, Soubrier N, Delclaux C, et al (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: Usefulness of practice guidelines. Am J Respir Crit Care Med 162:197–202

    CAS  PubMed  Google Scholar 

  167. Journois D, Schortgen F (2008) Sécurisation des procédures d’épuration extrarénale. Réanimation 17:557–65

    Google Scholar 

  168. Graham P, Lischer E (2011) Nursing issues in renal replacement therapy: organization, manpower assessment, competency evaluation and quality improvement processes. Semin Dial 24:183–7

    PubMed  Google Scholar 

  169. Boussely F, Bourgeon-Ghittori I, Schortgen F (2010) Épuration extrarénale: organisation de la formation des équipes médicales et paramédicales — 38e Congrès de la Société de réanimation de langue française. Elsevier Masson SAS

    Google Scholar 

  170. Clabault K, Richard J, Soulis F, et al (2006) Impact des recommandations de bonne pratique sur la tolérance hémodynamique de l’hémodialyse intermittente en réanimation. Reanimation 15:SP160

    Google Scholar 

  171. Blackwood B, Alderdice F, Burns K, et al (2011) Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and metaanalysis. BMJ 342:c7237

    Google Scholar 

  172. Wall RJ, Dittus RS, Ely EW (2001) Protocol-driven care in the intensive care unit: a tool for quality. Crit Care 5:283–5

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Baldwin I, Fealy N (2009) Nursing for renal replacement therapies in the Intensive Care Unit: historical, educational, and protocol review. Blood Purif 27:174–81

    PubMed  Google Scholar 

  174. Bellomo R, Cole L, Reeves J, Silvester W (1997) Renal replacement therapy in the ICU: the Australian experience. Am J Kidney Dis 30:S80–S3

    CAS  PubMed  Google Scholar 

  175. Dandy WE Jr, Sapir DG (1977) Acute renal failure. Community hospital experience with hemodialysis as intensive care adjunct. Crit Care Med 5:146–9

    PubMed  Google Scholar 

  176. De Becker W (2007) Starting up a continuous renal replacement therapy program on ICU. Contrib Nephrol 156:185–90

    PubMed  Google Scholar 

  177. Martin RK (1997) Who should manage CRRT in the ICU? The nursing viewpoint. Am J Kidney Dis 30:S105–S8

    CAS  PubMed  Google Scholar 

  178. Jones SL, Devonald MA (2013) How acute kidney injury is investigated and managed in UK intensive care units: a survey of current practice. Nephrol Dial Transplant 28:1186–90

    PubMed  Google Scholar 

  179. SFHH (2005) Bonnes pratiques d’hygiène en hémodialyse. Hygiènes XIII

    Google Scholar 

  180. Nguyen YL, Milbrandt EB, Weissfeld LA, et al (2011) Intensive care unit renal support therapy volume is not associated with patient outcome. Crit Care Med 39:2470–7

    PubMed  Google Scholar 

  181. Harb A, Estphan G, Nitenberg G, et al (2005) Indwelling time and risk of infection of dialysis catheters in critically ill cancer patients. Intensive Care Med 31:812–7

    PubMed  Google Scholar 

  182. Hryszko T, Brzosko S, Mazerska M, et al (2004) Risk factors of nontunneled noncuffed hemodialysis catheter malfunction. A prospective study. Nephron Clin Pract 96:c43–c7

    PubMed  Google Scholar 

  183. Morgan D, Ho K, Murray C, et al (2012) A randomized trial of catheters of different lengths to achieve right atrium versus superior vena cava placement for continuous renal replacement therapy. Am J Kidney Dis 60:272–9

    PubMed  Google Scholar 

  184. Canaud B, Desmeules S, Klouche K, et al (2004) Vascular access for dialysis in the intensive care unit. Best Pract Res Clin Anaesthesiol 18:159–74

    PubMed  Google Scholar 

  185. Yahav D, Rozen-Zvi B, Gafter-Gvili A, et al (2008) Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis 47:83–93

    PubMed  Google Scholar 

  186. Heng AE, Abdelkader MH, Diaconita M, et al (2011) Impact of short term use of interdialytic 60% ethanol lock solution on tunneled silicone catheter dysfunction. Clin Nephrol 75:534–41

    PubMed  Google Scholar 

  187. Hemmelgarn BR, Moist LM, Lok CE, et al (2011) Prevention of dialysis catheter malfunction with recombinant tissue plasminogen activator. N Engl J Med 364:303–12

    CAS  PubMed  Google Scholar 

  188. Hermite L, Quenot JP, Nadji A, et al (2012) Sodium citrate versus saline catheter locks for non-tunneled hemodialysis central venous catheters in critically ill adults: a randomized controlled trial. Intensive Care Med 38:279–85

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Ly Van Vong, David Osman or Christophe Vinsonneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vong, L., Osman, D., Vinsonneau, C. et al. Épuration extrarénale en réanimation adulte et pédiatrique. Recommandations formalisées d’experts sous l’égide de la Société de réanimation de langue française (SRLF), avec la participation de la Société française d’anesthésie-réanimation (Sfar), du Groupe francophone de réanimation et urgences pédiatriques (GFRUP) et de la Société francophone de dialyse (SFD). Réanimation 23, 714–737 (2014). https://doi.org/10.1007/s13546-014-0917-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0917-6

Navigation