Skip to main content
Log in

Liver X receptor α (LXRα) promoted invasion and EMT of gastric cancer cells by regulation of NF-κB activity

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Aberrant expression of Liver X receptor α (LXRα) has been frequently reported in various types of cancers excluding gastric cancer (GC). Moreover, the role of LXRα in human GC has not been previously reported. In this study, we investigated the effect of LXRα down-regulation on invasion and EMT of GC. The expression of LXRα in GC cell lines was detected by real-time PCR. The LXRα siRNA was transiently transfected into GC cells using Lipofectamine™ 2000 reagent. Subsequently, cell invasive ability was evaluated by Transwell assays. Western blot and real-time PCR were used to determined the expressions of matrix metalloproteinase-2 and -9 (MMP-2 and -9), E-cadherin, N-cadherin, Vimentin, Snail, Slug, and Twist in GC cells. In addition, the effect of LXRα down-regulation on the phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was explored by Western blot. From our results, we found that the expression of LXRα was significantly increased in GC tissues and cell lines. Knockdown of LXRα suppressed the invasive ability of GC cells. The levels of MMP-2 and -9 were dramatically decreased by down-regulating LXRα. In addition, we found a decrease of N-cadherin, Twist, and Slug expressions and an increase of E-cadherin expression, but no influence on the expression levels of Vimentin and Snail. We also found that LXRα down-regulation might suppress the phosphorylation of Akt, NF-κB, and IκB. Collectively, our results indicated that down-regulation of LXRα was shown to suppress invasion and EMT of GC cells by decreasing the expressions of related proteins through inhibiting the PI3K/Akt/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee SH, Kim IH, Kim IH, et al. Comparison of short-term outcomes and acute inflammatory response between laparoscopy-assisted and totally laparoscopic distal gastrectomy for early gastric cancer. Ann Surg Treat Res. 2015;89(4):176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Choi AH, Nelson RA, Merchant SJ, et al. Rates of lymph node metastasis and survival in T1a gastric adenocarcinoma in Western populations. Gastrointest Endosc. 2015;83(6):1184–92.

    Article  PubMed  Google Scholar 

  3. Subhash VV, Yeo MS, Tan WL, et al. Strategies and advancements in harnessing the immune system for gastric cancer immunotherapy. J Immunol Res. 2015;. doi:10.1155/2015/308574.

    PubMed  PubMed Central  Google Scholar 

  4. Price JT, Thompson EW. Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets. 2002;6(2):217–33.

    Article  CAS  PubMed  Google Scholar 

  5. Simpson-Haidaris PJ, Rybarczyk B. Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann N Y Acad Sci. 2001;936:406–25.

    Article  CAS  PubMed  Google Scholar 

  6. Klein G, Vellenga E, Fraaije MW, et al. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, eg acute leukemia. Crit Rev Oncol Hematol. 2004;50(2):87–100.

    Article  CAS  PubMed  Google Scholar 

  7. Zucker S, Vacirca J, et al. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):101–17.

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Weinberg RA, et al. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  CAS  PubMed  Google Scholar 

  9. Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001;23(10):912–23.

    Article  CAS  PubMed  Google Scholar 

  12. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sánchez-Tilló E, Liu Y, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69(20):3429–56.

    Article  PubMed  Google Scholar 

  14. Bhui K, Tyagi S, Srivastava AK, et al. Bromelain inhibits nuclear factor κ-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis. Mol Carcinog. 2012;51(3):231–43.

    Article  CAS  PubMed  Google Scholar 

  15. Neumann M, Naumann M. Beyond IκBs: alternative regulation of NF-κB activity. FASEB J. 2007;21(11):2642–54.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhou Y, Jia G, et al. Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: involvement of NF-κB signaling pathway. Biochem Pharmacol. 2014;88(3):322–33.

    Article  CAS  PubMed  Google Scholar 

  17. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.

    Article  CAS  PubMed  Google Scholar 

  18. Wei PL, Tu CC, Chen CH, et al. Shikonin suppresses the migratory ability of hepatocellular carcinoma cells. J Agric Food Chem. 2013;61(34):8191–7.

    Article  CAS  PubMed  Google Scholar 

  19. Song FN, Duan M, Liu LZ, et al. RANKL promotes migration and invasion of hepatocellular carcinoma cells via NF-κB-mediated epithelial-mesenchymal transition. PLoS One. 2014;9(9):e108507.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9(9):1033–45.

    Article  CAS  PubMed  Google Scholar 

  21. Teboul M, Enmark E, Li Q, et al. OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Natl Acad Sci. 1995;92(6):2096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289(5484):1524–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zelcer N, Hong C, Boyadjian R, et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325(5936):100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zelcer N, Tontonoz P, et al. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116(3):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bovenga F, Sabbà C, Moschetta A, et al. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab. 2015;21(4):517–26.

    Article  CAS  PubMed  Google Scholar 

  26. Lin CY, Gustafsson JÅ. Targeting liver X receptors in cancer therapeutics. Nat Rev Cancer. 2015;15(4):216–24.

    Article  PubMed  Google Scholar 

  27. Lo Sasso G, Bovenga F, Murzilli S, et al. Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology. 2013;144(7):1497–507.

    Article  CAS  PubMed  Google Scholar 

  28. Vedin LL, Gustafsson JÅ, Steffensen KR. The oxysterol receptors LXRα and LXRβ suppress proliferation in the colon. Mol Carcinog. 2013;52(11):835–44.

    Article  CAS  PubMed  Google Scholar 

  29. Vedin LL, Lewandowski SA, Parini P, et al. The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis. 2009;30(4):575–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko T, Kanno C, Ichikawa-Tomikawa N, et al. Liver X receptor reduces proliferation of human oral cancer cells by promoting cholesterol efflux via up-regulation of ABCA1 expression. Oncotarget. 2015;6(32):33345–57.

    PubMed  PubMed Central  Google Scholar 

  31. Chang YW, Zhao YF, Cao YL, et al. Liver X receptor α inhibits osteosarcoma cell proliferation through up-regulation of FoxO1. Cell Physiol Biochem. 2013;32(1):180–6.

    Article  CAS  PubMed  Google Scholar 

  32. Hu C, Liu D, Zhang Y, et al. Specific LXRs agonists downregulated expression of FOXM1, cyclin D1 and cyclin B1 in hepatocellular carcinoma (HCC) cells, which led to cell cycle and cell proliferation arrest. Oncogene. 2014;33(22):2888–97.

    Article  CAS  PubMed  Google Scholar 

  33. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  34. Woessner Jr JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5(8):2145–54.

    CAS  Google Scholar 

  35. Basset P, Okada A, Chenard MP, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol. 1997;15(8–9):535–41.

    Article  CAS  PubMed  Google Scholar 

  36. Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18(5):1135–49.

    Article  CAS  PubMed  Google Scholar 

  37. Chung TW, Moon SK, Lee YC, et al. Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Arch Biochem Biophys. 2002;408(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  38. Chung TW, Lee YC, Ko JH, et al. Hepatitis B Virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells. Cancer Res. 2003;63(13):3453–8.

    CAS  PubMed  Google Scholar 

  39. Kohn EC, Liotta LA. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res. 1995;55(9):1856–62.

    CAS  PubMed  Google Scholar 

  40. Graham TR, Odero-Marah VA, Chung LW, et al. PI3K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-κB in metastatic prostate cancer cells. Prostate. 2009;69(2):168–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu J, Wang Q, Wang H, et al. Activation of liver X receptor enhances the proliferation and migration of endothelial progenitor cells and promotes vascular repair through PI3k/Akt/eNOS signaling pathway activation. Vasc Pharmacol. 2014;62(3):150–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Zhang, B. & Zhao, G. Liver X receptor α (LXRα) promoted invasion and EMT of gastric cancer cells by regulation of NF-κB activity. Human Cell 30, 124–132 (2017). https://doi.org/10.1007/s13577-016-0157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-016-0157-3

Keywords

Navigation