Skip to main content
Log in

Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case–control study

  • Clinical and Epidemiological Study
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

In the 1,200-bed university hospital “Umberto I” in Rome, Italy, we observed a dramatic substitution of a precedingly well-documented Klebsiella pneumoniae clone (ST37) with ertapenem resistance by outer membrane permeability modification (Porin-ER-Kp) with a new K. pneumoniae strain expressing carbapenem resistance due to K. pneumoniae carbapenemase production (KPC-CR-Kp). A case–case–control study was carried out to evaluate risk factors for Porin-ER-Kp and KPC-CR-Kp isolation.

Methods

All patients with hospital-acquired K. pneumoniae isolation between July 2008 and June 2011 were included. Two case groups including patients harbouring KPC-CR-Kp and Porin-ER-Kp were analysed, with a third control group from whom carbapenem-susceptible K. pneumoniae (CS-Kp) were isolated.

Results

Forty-four KPC-CR-Kp cases, 39 Porin-ER-Kp cases and 60 CS-Kp controls were analysed. During the 3-year study, a specific Porin-ER-Kp endemic clone (ST37) was substituted by a new KPC-CR-Kp clone (ST512). Breakthrough bacteraemias occurred in 21 out of 26 KPC-CR-Kp group bloodstream infections (BSIs); nine of these developed during carbapenem therapy and seven with colistin and/or tigecycline therapy. In 13 Porin-ER-Kp BSIs, breakthrough bacteraemias developed in eight patients and four during carbapenem therapy. In the multivariable analysis, KPC-CR-Kp isolates were associated with carbapenems [odds ratio (OR) 7.74; 95 % confidence interval (CI) 1.70–35.2; p < 0.01) and endoscopy (OR 6.71; 95 % CI 1.25–36.0; p < 0.03). Porin-ER-Kp independent risk factors included second-generation cephalosporins (OR 25.7; 95 % CI 3.20–206.8; p < 0.01), carbapenems (OR 19.1; 95 % CI 4.34–83.9; p < 0.001), acute renal failure (OR 7.17; 95 % CI 1.33–38.6; p < 0.03), endoscopy (OR 6.12; 95 % CI 1.46–25.6; p < 0.02) and third-generation cephalosporins (OR 5.3; 95 % CI 1.34–20.9; p < 0.02).

Conclusions

Porin-ER-Kp strains needed major antimicrobial pressure compared to KPC-CR-Kp to express resistance. KPC-CR-Kp substituted Porin-ER-Kp strains, causing more infections. KPC-CR-Kp breakthrough bacteraemia occurred even under therapy with tigecycline or colistin, underlining that an antibiotic stewardship programme is needed urgently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. European Antimicrobial Resistance Surveillance System (EARSS). Annual report (2009). http://www.rivm.nl/earss.

  2. Kallen AJ, Hidron AI, Patel J, Srinivasan A. Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol. 2010;31:528–31.

    Article  PubMed  Google Scholar 

  3. Orsi GB, Falcone M, Venditti M. Surveillance and management of multidrug-resistant microorganisms. Expert Rev Anti Infect Ther. 2011;9:653–79.

    Article  PubMed  Google Scholar 

  4. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.

    Article  PubMed  CAS  Google Scholar 

  5. Elliott E, Brink AJ, van Greune J, et al. In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum beta-lactamase. Clin Infect Dis. 2006;42:e95–8.

    Article  PubMed  Google Scholar 

  6. Gröbner S, Linke D, Schütz W, et al. Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J Med Microbiol. 2009;58:912–22.

    Article  PubMed  Google Scholar 

  7. Leavitt A, Chmelnitsky I, Colodner R, Ofek I, Carmeli Y, Navon-Venezia S. Ertapenem resistance among extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae isolates. J Clin Microbiol. 2009;47:969–74.

    Article  PubMed  CAS  Google Scholar 

  8. Mena A, Plasencia V, García L, et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol. 2006;44:2831–7.

    Article  PubMed  CAS  Google Scholar 

  9. Doménech-Sánchez A, Martínez-Martínez L, Hernández-Allés S, et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother. 2003;47:3332–5.

    Article  PubMed  Google Scholar 

  10. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63:659–67.

    Article  PubMed  CAS  Google Scholar 

  11. Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:3203–6.

    Article  PubMed  CAS  Google Scholar 

  12. Wang XD, Cai JC, Zhou HW, Zhang R, Chen GX. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated beta-lactamase production and OmpK36 porin deficiency. J Med Microbiol. 2009;58:1196–202.

    Article  PubMed  CAS  Google Scholar 

  13. García-Fernández A, Miriagou V, Papagiannitsis CC, et al. An ertapenem-resistant extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother. 2010;54:4178–84.

    Article  PubMed  Google Scholar 

  14. Ben-David D, Kordevani R, Keller N, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 2012;18:54–60.

    Article  PubMed  CAS  Google Scholar 

  15. Falagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60:1124–30.

    Article  PubMed  CAS  Google Scholar 

  16. Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol. 2009;30:1180–5.

    Article  PubMed  Google Scholar 

  17. Hyle EP, Ferraro MJ, Silver M, Lee H, Hooper DC. Ertapenem-resistant Enterobacteriaceae: risk factors for acquisition and outcomes. Infect Control Hosp Epidemiol. 2010;31:1242–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hussein K, Sprecher H, Mashiach T, Oren I, Kassis I, Finkelstein R. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect Control Hosp Epidemiol. 2009;30:666–71.

    Article  PubMed  Google Scholar 

  19. Mouloudi E, Protonotariou E, Zagorianou A, et al. Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol. 2010;31:1250–6.

    Article  PubMed  Google Scholar 

  20. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099–106.

    Article  PubMed  Google Scholar 

  21. Orsi GB, García-Fernández A, Giordano A, et al. Risk factors and clinical significance of ertapenem-resistant Klebsiella pneumoniae in hospitalised patients. J Hosp Infect. 2011;78:54–8.

    Article  PubMed  CAS  Google Scholar 

  22. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections. In: Olmsted RN, editor. APIC infection control and applied epidemiology: principles and practice. St. Louis: Mosby; 1996: p. A1–20.

    Google Scholar 

  23. Bryan CS. Clinical implications of positive blood cultures. Clin Microbiol Rev. 1989;2:329–53.

    PubMed  CAS  Google Scholar 

  24. Tsakris A, Poulou A, Pournaras S, et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother. 2010;65:1664–71.

    Article  PubMed  CAS  Google Scholar 

  25. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43:4178–82.

    Article  PubMed  CAS  Google Scholar 

  26. Harris AD, Karchmer TB, Carmeli Y, Samore MH. Methodological principles of case–control studies that analyzed risk factors for antibiotic resistance: a systematic review. Clin Infect Dis. 2001;32:1055–61.

    Article  PubMed  CAS  Google Scholar 

  27. Won SY, Munoz-Price LS, Lolans K, Hota B, Weinstein RA, Hayden MK; Centers for Disease Control and Prevention Epicenter Program. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2011;53:532–40.

    Article  PubMed  CAS  Google Scholar 

  28. Gilbert DN, Moellering RC Jr, Eliopoulos GM, Chambers HF, Saag MS. The Sanford guide to antimicrobial therapy. 39th ed. Sperryville: Antimicrobial Therapy, Inc.; 2009.

    Google Scholar 

  29. Tsai YK, Fung CP, Lin JC, et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2011;55:1485–93.

    Article  PubMed  CAS  Google Scholar 

  30. Pournaras S, Vrioni G, Neou E, et al. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time–kill assay. Int J Antimicrob Agents. 2011;37:244–7.

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen M, Eschenauer GA, Bryan M, et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn Microbiol Infect Dis. 2010;67:180–4.

    Article  PubMed  Google Scholar 

  32. Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55:943–50.

    Article  PubMed  CAS  Google Scholar 

  33. Daikos GL, Petrikkos P, Psichogiou M, et al. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009;53:1868–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Ethical statement

The study was approved by the institutional review board (Department of Infectious Diseases, Sapienza University of Rome). All study participants gave informed written consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Orsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsi, G.B., Bencardino, A., Vena, A. et al. Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case–control study. Infection 41, 61–67 (2013). https://doi.org/10.1007/s15010-012-0354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-012-0354-2

Keywords

Navigation