Skip to main content

Advertisement

Log in

Population Attributable and Preventable Fractions: Cancer Risk Factor Surveillance, and Cancer Policy Projection

  • Cancer Epidemiology (G Colditz, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

The proportions of new cancer cases and deaths that are caused by exposure to risk factors and that could be prevented are key statistics for public health policy and planning. This paper summarizes the methodologies for estimating, challenges in the analysis of, and utility of, population attributable and preventable fractions for cancers caused by major risk factors such as tobacco smoking, dietary factors, high body fat, physical inactivity, alcohol consumption, infectious agents, occupational exposure, air pollution, sun exposure, and insufficient breastfeeding. For population attributable and preventable fractions, evidence of a causal relationship between a risk factor and cancer, outcome (such as incidence and mortality), exposure distribution, relative risk, theoretical-minimum-risk, and counterfactual scenarios need to be clearly defined and congruent. Despite limitations of the methodology and the data used for estimations, the population attributable and preventable fractions are a useful tool for public health policy and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol. 1974;99(5):325–32.

    CAS  PubMed  Google Scholar 

  2. Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9:531–41.

    CAS  PubMed  Google Scholar 

  3. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1192–308.

    Google Scholar 

  4. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  5. Cole P, MacMahon B. Attributable risk percent in case-control studies. Br J Prev Soc Med. 1971;25(4):242–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lilienfeld A. Epidemiology of infectious and noninfectious disease: some comparisons. Am J Epidemiol. 1973;97:135–47.

    CAS  PubMed  Google Scholar 

  7. Walter SD. Prevention for multifactorial diseases. Am J Epidemiol. 1980;112(3):409–16.

    CAS  PubMed  Google Scholar 

  8. Walter S. The estimation and interpretation of attributable risk in health research. Biometrics. 1976:829-49.

  9. Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health. 1982;7(4):292–309.

    Article  CAS  PubMed  Google Scholar 

  10. Parkin DM. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105 Suppl 2:S2–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Whiteman DC, Webb PM, Green AC, Neale RE, Fritschi L, Bain CJ, et al. Cancers in Australia in 2010 attributable to modifiable factors: summary and conclusions. Aust N Z J Public Health. 2015;39(5):477–84. This manuscripts outlines the cancers attributable to various risk factors in Australia, and acts as an exemplary example of a cancer comparative risk assessment study.

  12. Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol. 2015;25(3):155–61.

    Article  PubMed  Google Scholar 

  13. Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105 Suppl 2:S77–81. This manuscripts outlines the cancers attributable to various risk factors in United Kingdom, and acts as an exemplary example of a cancer comparative risk assessment study.

  14. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323. This manuscript outlines the most recent comparative risk assessment study (part of the Global Burden of Disease study) comparing the burdens caused by various risk factors from 1990 to 2013.

    Article  PubMed  Google Scholar 

  15. World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: American Institute for Cancer Research; 2008.

    Google Scholar 

  16. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: preamble. Lyon, France: International Agency for Research on Cancer 2006

  17. De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  18. Soerjomataram I, Pukkala E, Brenner H, Coebergh JWW. On the avoidability of breast cancer in industrialized societies: older mean age at first birth as an indicator of excess breast cancer risk. Breast Cancer Res Treat. 2008;111(2):297–302.

    Article  PubMed  Google Scholar 

  19. McCormack V, Boffetta P. Today’s lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low-and middle-income countries. Ann Oncol. 2011:mdq763.

  20. Murray CJ, Lopez AD. On the comparable quantification of health risks: lessons from the Global Burden of Disease Study. Epidemiology. 1999;10(5):594–605.

    Article  CAS  PubMed  Google Scholar 

  21. Kontis V, Mathers CD, Rehm J, Stevens GA, Shield KD, Bonita R, et al. Contribution of six risk factors to achieving the 25× 25 non-communicable disease mortality reduction target: a modelling study. Lancet. 2014;384(9941):427–37. This manuscript outlines the effects of reductions in various risk factors to meet the 25 × 25 non-communicable disease mortality reduction targets.

    Article  PubMed  Google Scholar 

  22. Asaria P, Chisholm D, Mathers C, Ezzati M, Beaglehole R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet. 2007;370(9604):2044–53.

    Article  PubMed  Google Scholar 

  23. Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128(6):1185–97.

    CAS  PubMed  Google Scholar 

  24. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1):15–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ezzati M, Vander Hoorn S, Rodgers A, Lopez AD, Mathers CD, Murray CJ. Estimates of global and regional potential health gains from reducing multiple major risk factors. Lancet. 2003;362(9380):271–80.

    Article  PubMed  Google Scholar 

  26. Arnold M, Pandeya N, Byrnes G, Renehan AG, Stevens GA, Ezzati M, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46. This manuscript estimates the global burden of cancer attributable to high body mass index. This article is an exemplary example of a burden of disease study, and highlights that current upward trends in weight gain are expected to cause an increase in the burden of cancer.

    Article  PubMed  Google Scholar 

  27. Olsen CM, Wilson LF, Nagle CM, Kendall BJ, Bain CJ, Pandeya N, et al. Cancers in Australia in 2010 attributable to insufficient physical activity. Aust N Z J Public Health. 2015;39(5):458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Institut national de prevention et d’éducation pour la santé. 2005 Baromètre. Saint Denis, France: Institut national de prevention et d’éducation pour la santé, 2006.

  29. World Health Organization. Global information system on alcohol and health. Geneva: World Health Organization; 2015.

    Google Scholar 

  30. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br J Cancer. 2014.

  31. Shield KD, Parry C, Rehm J. Focus on: chronic diseases and conditions related to alcohol use. Alcohol Res. 2013;85:2.

    Google Scholar 

  32. Praud D, Rota M, Rehm J, Shield K, Zatoński W, Hashibe M, et al. Cancer incidence and mortality attributable to alcohol consumption. Int J Cancer. 2016;138(6):1380–7. This manuscript estimates the burden of cancer attributable to alcohol consumption. This article is an exemplary example of a burden of disease study, and highlights the large and growing burden of cancer attributable to alcohol globally.

    Article  CAS  PubMed  Google Scholar 

  33. Rehm J, Taylor B, Patra J, Gmel G. Avoidable burden of disease: conceptual and methodological issues in substance abuse epidemiology. Int J Methods Psychiatr Res. 2006;15(4):191–11.

    Article  Google Scholar 

  34. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva: Switzerland: World Health Organization; 2013. This document establishes the current health priorities to reduce the burden caused by non-communicable diseases in the future. Among these priorities are reductions in cancer, tobacco smoking and alcohol consumption.

    Google Scholar 

  35. Soerjomataram I, De Vries E, Pukkala E, Coebergh JW. Excess of cancers in Europe: a study of eleven major cancers amenable to lifestyle change. Int J Cancer. 2007;120(6):1336–43.

    Article  CAS  PubMed  Google Scholar 

  36. Kulik MC, Nusselder WJ, Boshuizen HC, Lhachimi SK, Fernández E, Baili P, et al. Comparison of tobacco control scenarios: quantifying estimates of long-term health impact using the DYNAMO-HIA modeling tool. PLoS One. 2012;7(2), e32363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levy DT, Ellis JA, Mays D, Huang A-T. Smoking-related deaths averted due to three years of policy progress. Bull World Health Organ. 2013;91(7):509–18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Soerjomataram I, De Vries E, Engholm G, Paludan-Müller G, Brønnum-Hansen H, Storm HH, et al. Impact of a smoking and alcohol intervention programme on lung and breast cancer incidence in Denmark: an example of dynamic modelling with Prevent. Eur J Cancer. 2010;46(14):2617–24.

    Article  PubMed  Google Scholar 

  39. Appleby J, Devlin N, Parkin D. NICE’s cost effectiveness threshold. Br Med J. 2007;7616:358.

    Article  Google Scholar 

  40. Murray CJ, Salomon JA, Mathers CD, Lopez AD. Summary measures of population health: concepts, ethics, measurement and applications. Geneva: World Health Organization; 2002.

    Google Scholar 

  41. Murray CJ. Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull World Health Organ. 1994;72(3):429.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss W. Cigarette smoking and lung cancer trends. A light at the end of the tunnel? Chest. 1997;111(5):1414–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Environ Med. 1992;34(7):718–21.

    CAS  Google Scholar 

  44. Olsen J, Dragsted L, Autrup H. Cancer risk and occupational exposure to aflatoxins in Denmark. Br J Cancer. 1988;58(3):392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Reilly KM, McLaughlin AM, Beckett WS, Sime PJ. Asbestos-related lung disease. Am Fam Physician. 2007;75(5):683–8.

    PubMed  Google Scholar 

  46. Steenland K, Stayner L, Deddens J. Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup Environ Med. 2004;61(1):2–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Crump KS. Risk of benzene-induced leukemia: a sensitivity analysis of the pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health A. 1994;42(2):219–42.

    Article  CAS  Google Scholar 

  48. Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76.

    Article  CAS  PubMed  Google Scholar 

  49. Chlebowski RT, Kuller LH, Prentice RL, Stefanick ML, Manson JE, Gass M, et al. Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med. 2009;360(6):573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Briggs AD, Kehlbacher A, Tiffin R, Garnett T, Rayner M, Scarborough P. Assessing the impact on chronic disease of incorporating the societal cost of greenhouse gases into the price of food: an econometric and comparative risk assessment modelling study. BMJ Open. 2013;3(10), e003543.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Renehan AG, Soerjomataram I, Tyson M, Egger M, Zwahlen M, Coebergh JW, et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 2010;126(3):692–702.

    Article  CAS  PubMed  Google Scholar 

  52. Gmel G, Shield KD, Kehoe-Chan TA, Rehm J. The effects of capping the alcohol consumption distribution and relative risk functions on the estimated number of deaths attributable to alcohol consumption in the European Union in 2004. BMC Med Res Methodol. 2013;13(1):1.

    Article  Google Scholar 

  53. Saracci R, Vineis P. Disease proportions attributable to environment. Environ Health. 2007;6(38).

  54. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    Article  PubMed  Google Scholar 

  55. Purshouse RC, Meier PS, Brennan A, Taylor KB, Rafia R. Estimated effect of alcohol pricing policies on health and health economic outcomes in England: an epidemiological model. Lancet. 2010;375(9723):1355–64.

    Article  PubMed  Google Scholar 

  56. Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8(6):340–7.

    Article  PubMed  Google Scholar 

  57. Pandeya N, Williams G, Green AC, Webb PM, Whiteman DC, Study AC. Alcohol consumption and the risks of adenocarcinoma and squamous cell carcinoma of the esophagus. Gastroenterology. 2009;136(4):1215–24. e2.

    Article  CAS  PubMed  Google Scholar 

  58. Gauderman WJ, Morrison JL. Evidence for age-specific genetic relative risks in lung cancer. Am J Epidemiol. 2000;151(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  59. McPherson K, Steel C, Dixon J. Breast cancer—epidemiology, risk factors, and genetics. Br Med J. 2000;321(7261):624–8.

    Article  CAS  Google Scholar 

  60. Brennan P, Lewis S, Hashibe M, Bell DA, Boffetta P, Bouchardy C, et al. Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGE review. Am J Epidemiol. 2004;159(1):1–16.

    Article  PubMed  Google Scholar 

  61. Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst. 2003;95(6):470–8.

    Article  PubMed  Google Scholar 

  62. Peto R, Boreham J, Lopez AD, Thun M, Heath C. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet. 1992;339(8804):1268–78.

    Article  CAS  PubMed  Google Scholar 

  63. Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5(9), e185.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer. 2013;13(9):674–8.

    Article  CAS  PubMed  Google Scholar 

  65. Liu B-Q, Peto R, Chen Z-M, Boreham J, Wu Y-P, Li J-Y, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. Br Med J. 1998;317(7170):1411–22.

    Article  CAS  Google Scholar 

  66. Ezzati M, Lopez AD. Measuring the accumulated hazards of smoking: global and regional estimates for 2000. Tob Control. 2003;12(1):79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Preston SH, Glei DA, Wilmoth JR. A new method for estimating smoking-attributable mortality in high-income countries. Int J Epidemiol. 2010;39(2):430–8.

    Article  PubMed  Google Scholar 

  68. Parkin D, Mesher D, Sasieni P. 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer. 2011;105:S66–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Armstrong B, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res. 1993;3(6):395–402.

    Article  CAS  PubMed  Google Scholar 

  70. Olsen CM, Wilson LF, Green AC, Bain CJ, Fritschi L, Neale RE, et al. Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Aust N Z J Public Health. 2015;39(5):471–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang J, Kai FY. What’s the relative risk?: a method of correcting the odds ratio in cohort studies of common outcomes. J Am Med Assoc. 1998;280(19):1690–1.

    Article  CAS  Google Scholar 

  72. Ebrahim S, Montaner D, Lawlor DA. Clustering of risk factors and social class in childhood and adulthood in British women’s heart and health study: cross sectional analysis. Br Med J. 2004;328(7444):861.

    Article  Google Scholar 

  73. Schuit AJ, van Loon AJM, Tijhuis M, Ocké MC. Clustering of lifestyle risk factors in a general adult population. Prev Med. 2002;35(3):219–24.

    Article  PubMed  Google Scholar 

  74. Blakely T, Hales S, Kieft C, Wilson N, Woodward A. The global distribution of risk factors by poverty level. Bull World Health Organ. 2005;83(2):118–26.

    PubMed  PubMed Central  Google Scholar 

  75. Flegal KM, Williamson DF, Graubard BI. Using adjusted relative risks to calculate attributable fractions. Am J Public Health. 2006;96(3):398.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Castellsagué X, Muñoz N, De Stefani E, Victora CG, Castelletto R, Rolón PA, et al. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int J Cancer. 1999;82(5):657–64.

    Article  PubMed  Google Scholar 

  77. Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to quantify the health burden of obesity. Ann Epidemiol. 2015;25(3):201–7.

    Article  PubMed  Google Scholar 

  78. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4), e1000058.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ezzati M, Vander Hoorn S, Rodgers A, Lopez AD, Mathers CD, Murray CJ. Potential health gains from reducing multiple risk factors. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL, editors. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. p. 2167–90.

    Google Scholar 

  80. Bruzzi P, Green S, Byar D, Brinton L, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985;122(5):904–14.

    CAS  PubMed  Google Scholar 

  81. World Health Organization. Global Burden of Disease and Risk Factors. Geneva: Switzerland World Health Organization; 2006.

    Google Scholar 

  82. Kontis V, Mathers CD, Bonita R, Stevens GA, Rehm J, Shield KD, et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob Health. 2015;3(12):e746–57.

    Article  PubMed  Google Scholar 

  83. Driscoll T, Steenland K, Prüss-Üstün A, Nelson Deborah I, Leigh J. Occupational carcinogens: assessing the environmental burden of disease at national and local levels. Geneva: World Health Organization; 2004.

    Google Scholar 

  84. Shield KD, Rehm J. Difficulties with telephone-based surveys on alcohol consumption in high-income countries: the Canadian example. Int J Methods Psychiatr Res. 2012;21(1):17–28.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Groves RM. Survey errors and survey costs. New Jersey: John Wiley & Sons; 2004.

    Google Scholar 

  86. Tourangeau R, Yan T. Sensitive questions in surveys. Psychol Bull. 2007;133(5):859.

    Article  PubMed  Google Scholar 

  87. Strack F, Martin LL. Thinking, judging, and communicating: a process account of context effects in attitude surveys. In: Schwarz N, Sudman S, editors. Social information processing and survey methodology. New York: Springer-Verlag; 1987. p. 123–48.

    Chapter  Google Scholar 

  88. Rehm J, Baliunas D, Borges GL, Graham K, Irving H, Kehoe T, et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. Addiction. 2010;105(5):817–43.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Copeland KT, Checkoway H, McMichael AJ, Holbrook RH. Bias due to misclassification in the estimation of relative risk. Am J Epidemiol. 1977;105(5):488–95.

    CAS  PubMed  Google Scholar 

  90. Zeisser C, Stockwell TR, Chikritzhs T. Methodological biases in estimating the relationship between alcohol consumption and breast cancer: the role of drinker misclassification errors in meta-analytic results. Alcohol Clin Exp Res. 2014;38(8):2297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. World Health Organization. OneHealth Tool. Geneva: World Health Organization; 2016.

    Google Scholar 

  92. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. Comparative risk assessment collaborating group. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.

    Article  PubMed  Google Scholar 

  93. International Agency for Research on Cancer. Attributable causes of cancer in France in the year 2000. Lyon: International Agency for Research on Cancer; 2007.

    Google Scholar 

  94. United Nations. Sustainable development goals: 17 goals to transform our world. New York: United Nations; 2016.

    Google Scholar 

  95. National Health Service. Change 4 life. London: National Health Service; 2016.

    Google Scholar 

  96. Cancer Research UK. Statistics on preventable cancers. London: Cancer Research UK; 2016.

    Google Scholar 

  97. Gartner CE, Barendregt JJ, Hall WD. Predicting the future prevalence of cigarette smoking in Australia: how low can we go and by when? Tob Control. 2009;18(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  98. Soerjomataram I, Barendregt JJ, Gartner C, Kunst A, Møller H, Avendano M. Reducing inequalities in lung cancer incidence through smoking policies. Lung Cancer. 2011;73(3):268–73.

    Article  PubMed  Google Scholar 

  99. Glaser SL, Clarke CA, Gomez SL, O’Malley CD, Purdie DM, West DW. Cancer surveillance research: a vital subdiscipline of cancer epidemiology. Cancer Causes Control. 2005;16(9):1009–19.

    Article  PubMed  Google Scholar 

  100. Kauppinen T, Toikkanen J, Pedersen D, Young R, Ahrens W, Boffetta P, et al. Occupational exposure to carcinogens in the European Union. Occup Environ Med. 2000;57(1):10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Single E, Robson L, Xie X, Rehm J. The economic costs of alcohol, tobacco and illicit drugs in Canada, 1992. Addiction. 1998;93(7):991–1006.

    Article  CAS  PubMed  Google Scholar 

  102. Fenoglio P, Parel V, Kopp P. The social cost of alcohol, tobacco and illicit drugs in France, 1997. Eur Addict Res. 2003;9(1):18–28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Shield.

Ethics declarations

Conflict of Interest

Kevin D. Shield, D. Maxwell Parkin, David C. Whiteman, Jürgen Rehm, Vivian Viallon, Claire Marant Micallef, Paolo Vineis, Lesley Rushton, Freddie Bray, Isabelle Soerjomataram declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Sources

French National Cancer Institute [contract number 2015-002].

Additional information

This article is part of the Topical Collection on Cancer Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shield, K.D., Parkin, D.M., Whiteman, D.C. et al. Population Attributable and Preventable Fractions: Cancer Risk Factor Surveillance, and Cancer Policy Projection. Curr Epidemiol Rep 3, 201–211 (2016). https://doi.org/10.1007/s40471-016-0085-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-016-0085-5

Keywords

Navigation