Skip to main content

Advertisement

Log in

Postoperative delirium in the elderly: the potential neuropathogenesis

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Postoperative delirium (POD) is a neurobehavioral syndrome caused by dysfunction of neural activity mainly in elderly people. POD is not uncommon, but under-recognized, and often serious. Multifactorial causes including aging, acetylcholine deficiency, sleep deprivation and intraoperative hypoxia have been proposed attempting to explain the processes leading to the development of POD. To date, however, no specific pathophysiologic mechanism has been identified. Here, we summarize the five most prominent theories (neuronal aging, neuroinflammation, neurotransmitter imbalance, neuroendocrine activation, and network connectivity change) to explain the development of delirium. Understanding of the neuropathogenesis of delirium will help focus future research, and assist in developing prophylactic and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Inouye SK, Westendorp RG, Saczynski JS (2014) Delirium in elderly people. Lancet 383:911–922. https://doi.org/10.1016/S0140-6736(13)60688-1

    Article  Google Scholar 

  2. Rudolph JL, Marcantonio ER (2011) Review articles: postoperative delirium: acute change with long-term implications. Anesth Analg 112:1202–1211. https://doi.org/10.1213/ANE.0b013e3182147f6d

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sprung J, Roberts RO, Weingarten TN et al (2017) Postoperative delirium in elderly patients is associated with subsequent cognitive impairment. Br J Anaesth 119:316–323. https://doi.org/10.1093/bja/aex130

    Article  CAS  PubMed  Google Scholar 

  4. Sauer AC, Veldhuijzen DS, Ottens TH et al (2017) Association between delirium and cognitive change after cardiac surgery. Br J Anaesth 119:308–315. https://doi.org/10.1093/bja/aex053

    Article  CAS  PubMed  Google Scholar 

  5. Han JH, Eden S, Shintani A et al (2011) Delirium in older emergency department patients is an independent predictor of hospital length of stay. Acad Emerg Med 18:451–457. https://doi.org/10.1111/j.1553-2712.2011.01065.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Florou C, Theofilopoulos D, Tziaferi S et al (2017) Post-operative delirium in elderly people diagnostic and management issues of post-operative delirium in elderly people. Adv Exp Med Biol 987:301–312. https://doi.org/10.1007/978-3-319-57379-3_27

    Article  PubMed  Google Scholar 

  7. Zhang W, Wu W, Gu J et al (2015) Risk factors for postoperative delirium in patients after coronary artery bypass grafting: a prospective cohort study. J Crit Care 30:606–612. https://doi.org/10.1016/j.jcrc.2015.02.003

    Article  PubMed  Google Scholar 

  8. Milbrandt EB, Deppen S, Harrison PL et al (2004) Costs associated with delirium in mechanically ventilated patients. Crit Care Med 32:955–962

    Article  Google Scholar 

  9. Williams ST (2013) Pathophysiology of encephalopathy and delirium. J Clin Neurophysiol 30:435–437. https://doi.org/10.1097/WNP.0b013e3182a73e04

    Article  PubMed  Google Scholar 

  10. Ansaloni L, Catena F, Chattat R et al (2010) Risk factors and incidence of postoperative delirium in elderly patients after elective and emergency surgery. Br J Surg 97:273–280. https://doi.org/10.1002/bjs.6843

    Article  CAS  PubMed  Google Scholar 

  11. Galyfos GC, Geropapas GE, Sianou A et al (2017) Risk factors for postoperative delirium in patients undergoing vascular surgery. J Vasc Surg 66:937–946. https://doi.org/10.1016/j.jvs.2017.03.439

    Article  PubMed  Google Scholar 

  12. Jankowski CJ, Trenerry MR, Cook DJ et al (2011) Cognitive and functional predictors and sequelae of postoperative delirium in elderly patients undergoing elective joint arthroplasty. Anesth Analg 112:1186–1193. https://doi.org/10.1213/ANE.0b013e318211501b

    Article  PubMed  Google Scholar 

  13. Sauër AC, Veldhuijzen DS, Ottens TH et al (2017) Association between delirium and cognitive change after cardiac surgery. BJA 119:308–315. https://doi.org/10.1093/bja/aex053

    Article  PubMed  Google Scholar 

  14. Maldonado JR (2013) Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 21:1190–1222. https://doi.org/10.1016/j.jagp.2013.09.005

    Article  PubMed  Google Scholar 

  15. Troncale JA (1996) The aging process. Physiologic changes and pharmacologic implications. Postgrad Med 99:111–114, 120–122

    Article  CAS  Google Scholar 

  16. Aldecoa C, Bettelli G, Bilotta F et al (2017) European society of anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesth 34:192–214. https://doi.org/10.1097/EJA.0000000000000594

    Article  Google Scholar 

  17. Chung KS, Lee JK, Park JS et al (2015) Risk factors of delirium in patients undergoing total knee arthroplasty. Arch Gerontol Geriat 60:443–447. https://doi.org/10.1016/j.archger.2015.01.021

    Article  Google Scholar 

  18. Clegg A, Young J, Iliffe S et al (2013) Frailty in elderly people. Lancet 381:752–762. https://doi.org/10.1016/S0140-6736(12)62167-9

    Article  PubMed  Google Scholar 

  19. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535. https://doi.org/10.1038/nature08983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panegyres PK (2004) The contribution of the study of neurodegenerative disorders to the understanding of human memory. QJM 97:555–567. https://doi.org/10.1093/qjmed/hch096

    Article  CAS  PubMed  Google Scholar 

  21. De Castro SMM, Ünlü C, Tuynman JB et al (2014) Incidence and risk factors of delirium in the elderly general surgical patient. Am J Surg 208:26–32. https://doi.org/10.1016/j.amjsurg.2013.12.029

    Article  PubMed  Google Scholar 

  22. Liu P, Li YW, Wang XS et al (2013) High serum interleukin-6 level is associated with increased risk of delirium in elderly patients after noncardiac surgery: a prospective cohort study. Chin Med J (Engl) 126:3621–3627

    CAS  Google Scholar 

  23. Acharya NK, Goldwaser EL, Forsberg MM et al (2015) Sevoflurane and isoflurane induce structural changes in brain vascular endothelial cells and increase blood–brain barrier permeability: possible link to postoperative delirium and cognitive decline. Brain Res 1620:29–41. https://doi.org/10.1016/j.brainres.2015.04.054

    Article  CAS  PubMed  Google Scholar 

  24. Cerejeira J, Firmino H, Vaz-Serra A et al (2010) The neuroinflammatory hypothesis of delirium. Acta Neuropathol 119:737–754. https://doi.org/10.1007/s00401-010-0674-1

    Article  PubMed  Google Scholar 

  25. Cunningham C, Wilcockson DC, Campion S et al (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284. https://doi.org/10.1523/JNEUROSCI.2614-05.2005

    Article  CAS  PubMed  Google Scholar 

  26. Rolandi E, Cavedo E, Pievani M et al (2018) Association of postoperative delirium with markers of neurodegeneration and brain amyloidosis: a pilot study. Neurobiol Aging 61:93–101. https://doi.org/10.1016/j.neurobiolaging.2017.09.020

    Article  PubMed  Google Scholar 

  27. Otomo S, Maekawa K, Goto T et al (2013) Pre-existing cerebral infarcts as a risk factor for delirium after coronary artery bypass graft surgery. Interact Cardiov Thorac 17:799–804. https://doi.org/10.1093/icvts/ivt304

    Article  Google Scholar 

  28. Maekawa K, Baba T, Otomo S et al (2014) Low pre-existing gray matter volume in the medial temporal lobe and white matter lesions are associated with postoperative cognitive dysfunction after cardiac surgery. Plos One 9:e87375. https://doi.org/10.1371/journal.pone.0087375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Umholtz M, Nader ND (2017) Anesthetic immunomodulation of the neuroinflammation in postoperative cognitive dysfunction. Immunol Invest 46:805–815. https://doi.org/10.1080/08820139.2017.1373898

    Article  CAS  PubMed  Google Scholar 

  30. Capri M, Yani SL, Chattat R et al (2014) Pre-operative, high-il-6 blood level is a risk factor of post-operative delirium onset in old patients. Front Endocrinol (Lausanne) 5:173. https://doi.org/10.3389/fendo.2014.00173

    Article  Google Scholar 

  31. Cerejeira J, Nogueira V, Luís P et al (2012) The cholinergic system and inflammation: common pathways in delirium pathophysiology. J Am Geriatr Soc 60:669–675. https://doi.org/10.1111/j.1532-5415.2011.03883.x

    Article  PubMed  Google Scholar 

  32. de Rooij SE, van Munster BC, Korevaar JC et al (2007) Cytokines and acute phase response in delirium. J Psychosom Res 62:521–525. https://doi.org/10.1016/j.jpsychores.2006.11.013

    Article  PubMed  Google Scholar 

  33. Shen X, Dong Y, Xu Z et al (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118:502–515. https://doi.org/10.1097/ALN.0b013e3182834d77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tao G, Zhang J, Zhang L et al (2014) Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology 121:510–527. https://doi.org/10.1097/ALN.0000000000000278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng H, Dong Y, Xu Z et al (2013) Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118:516–526. https://doi.org/10.1097/ALN.0b013e3182834d5d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spiegel DR, Chen V (2012) A case of postoperative cognitive decline, with a highly elevated c-reactive protein, status post left ventricular assist device insertion: a review of the neuroinflammatory hypothesis of delirium. Innov Clin Neurosci 9:35–41

    PubMed  PubMed Central  Google Scholar 

  37. Bjornsson GL, Thorsteinsson L, Gudmundsson KO et al (2007) Inflammatory cytokines in relation to adrenal response following total hip replacement. Scand J Immunol 65:99–105. https://doi.org/10.1111/j.1365-3083.2006.01872.x

    Article  CAS  PubMed  Google Scholar 

  38. Kragsbjerg P, Holmberg H, Vikerfors T (1995) Serum concentrations of interleukin-6, tumour necrosis factor-alpha, and c-reactive protein in patients undergoing major operations. Eur J Surg 161:17–22

    CAS  PubMed  Google Scholar 

  39. Alexander JJ, Jacob A, Cunningham P et al (2008) TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int 52:447–456. https://doi.org/10.1016/j.neuint.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  40. Qu T, Uz T, Manev H (2000) Inflammatory 5-LOX mRNA and protein are increased in brain of aging rats. Neurobiol Aging 21:647–652

    Article  CAS  Google Scholar 

  41. Thompson WL, Karpus WJ, Van Eldik LJ (2008) MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 5:35. https://doi.org/10.1186/1742-2094-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagnall N, Faiz OD (2014) Delirium, frailty and il-6 in the elderly surgical patient. Langenbeck Arch Surg 399:799–800. https://doi.org/10.1007/s00423-014-1190-x

    Article  Google Scholar 

  43. Murray C, Sanderson DJ, Barkus C et al (2012) Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 33:603–616. https://doi.org/10.1016/j.neurobiolaging.2010.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ali MS, Harmer M, Vaughan R (2000) Serum s100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth 85:287–298

    Article  CAS  Google Scholar 

  45. Nguyen DN, Spapen H, Su F et al (2006) Elevated serum levels of s-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med 34:1967–1974. https://doi.org/10.1097/01.CCM.0000217218.51381.49

    Article  CAS  PubMed  Google Scholar 

  46. He F, Yin F, Peng J et al (2010) Molecular mechanism for change in permeability in brain microvascular endothelial cells induced by LPS. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35:1129–1137. https://doi.org/10.3969/j.issn.1672-7347.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  47. Hala M (2007) Pathophysiology of postoperative delirium: systemic inflammation as a response to surgical trauma causes diffuse microcirculatory impairment. Med Hypotheses 68:194–196. https://doi.org/10.1016/j.mehy.2006.07.003

    Article  PubMed  Google Scholar 

  48. Marchi N, Cavaglia M, Fazio V et al (2004) Peripheral markers of blood–brain barrier damage. Clin Chim Acta 342:1–12. https://doi.org/10.1016/j.cccn.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  49. Hall RJ, Ferguson KJ, Andrews M et al (2013) Delirium and cerebrospinal fluid s100b in hip fracture patients: a preliminary study. Am J Geriatr Psychiatry 21:1239–1243. https://doi.org/10.1016/j.jagp.2012.12.024

    Article  PubMed  Google Scholar 

  50. van Munster BC, Korevaar JC, Korse CM et al (2010) Serum s100b in elderly patients with and without delirium. Int J Geriatr Psychiatry 25:234–239. https://doi.org/10.1002/gps.2326

    Article  PubMed  Google Scholar 

  51. van Munster BC, Korse CM, de Rooij SE et al (2009) Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurol 9:21. https://doi.org/10.1186/1471-2377-9-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Golinger RC, Peet T, Tune LE (1987) Association of elevated plasma anticholinergic activity with delirium in surgical patients. Am J Psychiatry 144:1218–1220. https://doi.org/10.1176/ajp.144.9.1218

    Article  CAS  PubMed  Google Scholar 

  53. Trzepacz PT (2000) Is there a final common neural pathway in delirium? Focus on acetylcholine and dopamine. Semin Clin Neuropsychiatry 5:132–148. https://doi.org/10.153/SCNP00500132

    CAS  PubMed  Google Scholar 

  54. Trzepacz PT (1996) Anticholinergic model for delirium. Semin Clin Neuropsychiatry 1:294–303. https://doi.org/10.1053/SCNP00100294

    Article  CAS  PubMed  Google Scholar 

  55. Flacker JM, Wei JY (2001) Endogenous anticholinergic substances may exist during acute illness in elderly medical patients. J Gerontol A Biol Sci Med Sci 56:M353–M355

    Article  CAS  Google Scholar 

  56. Plaschke K, Thomas C, Engelhardt R et al (2007) Significant correlation between plasma and CSF anticholinergic activity in presurgical patients. Neurosci Lett 417:16–20. https://doi.org/10.1016/j.neulet.2007.02.015

    Article  CAS  PubMed  Google Scholar 

  57. Tune L, Carr S, Cooper T et al (1993) Association of anticholinergic activity of prescribed medications with postoperative delirium. J Neuropsychiatry Clin Neurosci 5:208–210. https://doi.org/10.1176/jnp.5.2.208

    Article  CAS  PubMed  Google Scholar 

  58. Tune LE (2000) Serum anticholinergic activity levels and delirium in the elderly. Semin Clin Neuropsychiatry 5:149–153. https://doi.org/10.153/SCNP00500149

    CAS  PubMed  Google Scholar 

  59. Clegg A, Young JB (2011) Which medications to avoid in people at risk of delirium: a systematic review. Age Ageing 40:23–29. https://doi.org/10.1093/ageing/afq140

    Article  PubMed  Google Scholar 

  60. Flacker JM, Lipsitz LA (1999) Neural mechanisms of delirium: current hypotheses and evolving concepts. J Gerontol A Biol Sci Med Sci 54:B239–B246

    Article  CAS  Google Scholar 

  61. Lipowski ZJ (1991) Delirium: how its concept has developed. Int Psychogeriatr 3:115–120

    Article  CAS  Google Scholar 

  62. Maldonado JR (2008) Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit Care Clin 24:789–856. https://doi.org/10.1016/j.ccc.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  63. Trzepacz PT, Leavitt M, Ciongoli K (1992) An animal model for delirium. Psychosomatics 33:404–415. https://doi.org/10.1016/S0033-3182(92)71945-8

    Article  CAS  PubMed  Google Scholar 

  64. Carmen JS, Wyatt RJ (1977) Calcium and malignant catatonia. Lancet 2:1124–1125

    Article  CAS  Google Scholar 

  65. Kirsch JR, Diringer MN, Borel CO et al (1989) Brain resuscitation. Medical management and innovations. Crit Care Nurs Clin North Am 1:143–154

    Article  CAS  Google Scholar 

  66. Pedrosa R, Soares-da-Silva P (2002) Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by l-3,4-dihydroxyphenylalanine (l-dopa) and dopamine. Br J Pharmacol 137:1305–1313. https://doi.org/10.1038/sj.bjp.0704982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Graham DG (1984) Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and parkinson’s disease. Neurotoxicology 5:83–95

    CAS  PubMed  Google Scholar 

  68. Berry AS, Shah VD, Baker SL et al (2016) Aging affects dopaminergic neural mechanisms of cognitive flexibility. J Neurosci 36:12559–12569. https://doi.org/10.1523/JNEUROSCI.0626-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yilmaz S, Aksoy E, Diken AI et al (2016) Dopamine administration is a risk factor for delirium in patients undergoing coronary artery bypass surgery. Heart Lung Circ 25:493–498. https://doi.org/10.1016/j.hlc.2015.09.012

    Article  PubMed  Google Scholar 

  70. Guo Y, Zhang Y, Jia P et al (2017) Preoperative serum metabolites are associated with postoperative delirium in elderly hip-fracture patients. J Gerontol A Biol Sci Med Sci 72:1689–1696. https://doi.org/10.1093/gerona/glx001

    Article  PubMed  Google Scholar 

  71. Maldonado JR (2010) An approach to the patient with substance use and abuse. Med Clin North Am 94:1169–1205. https://doi.org/10.1016/j.mcna.2010.08.010

    Article  PubMed  Google Scholar 

  72. Grigoleit JS, Kullmann JS, Wolf OT et al (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. Plos One 6:e28330. https://doi.org/10.1371/journal.pone.0028330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marik PE (2011) Glucocorticoids in sepsis: dissecting facts from fiction. Crit Care 15:158. https://doi.org/10.1186/cc10101

    Article  PubMed  PubMed Central  Google Scholar 

  74. Munhoz CD, Sorrells SF, Caso JR et al (2010) Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci 30:13690–13698. https://doi.org/10.1523/JNEUROSCI.0303-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sapolsky RM, Krey LC, McEwen BS (1986) The adrenocortical axis in the aged rat: impaired sensitivity to both fast and delayed feedback inhibition. Neurobiol Aging 7:331–335

    Article  CAS  Google Scholar 

  76. de Leon MJ, McRae T, Tsai JR et al (1988) Abnormal cortisol response in alzheimer’s disease linked to hippocampal atrophy. Lancet 2:391–392

    Article  Google Scholar 

  77. Magri F, Cravello L, Barili L et al (2006) Stress and dementia: the role of the hypothalamic–pituitary–adrenal axis. Aging Clin Exp Res 18:167–170

    Article  CAS  Google Scholar 

  78. McIntosh TK, Bush HL, Yeston NS et al (1985) Beta-endorphin, cortisol and postoperative delirium: a preliminary report. Psychoneuroendocrino 10:303–313

    Article  CAS  Google Scholar 

  79. Robertsson B, Blennow K, Brane G et al (2001) Hyperactivity in the hypothalamic–pituitary–adrenal axis in demented patients with delirium. Int Clin Psychopharmacol 16:39–47

    Article  CAS  Google Scholar 

  80. MacLullich AM, Hall RJ (2011) Who understands delirium? Age Ageing 40:412–414. https://doi.org/10.1093/ageing/afr062

    Article  PubMed  Google Scholar 

  81. Kain ZN, Caldwell-Andrews AA, Maranets I et al (2004) Preoperative anxiety and emergence delirium and postoperative maladaptive behaviors. Anesth Analg 99:1648–1654. https://doi.org/10.1213/01.ANE.0000136471.36680.97

    Article  PubMed  Google Scholar 

  82. Tully PJ, Baker RA, Winefield HR et al (2010) Depression, anxiety disorders and type d personality as risk factors for delirium after cardiac surgery. Aust N Z J Psychiatry 44:1005–1011. https://doi.org/10.3109/00048674.2010.495053

    Article  PubMed  Google Scholar 

  83. McAvay GJ, Van Ness PH, Bogardus SJ et al (2007) Depressive symptoms and the risk of incident delirium in older hospitalized adults. J Am Geriatr Soc 55:684–691. https://doi.org/10.1111/j.1532-5415.2007.01150.x

    Article  PubMed  Google Scholar 

  84. Strickland PL, Deakin JF, Percival C et al (2002) Bio-social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br J Psychiatry 180:168–173

    Article  Google Scholar 

  85. Shin JE, Kyeong S, Lee JS et al (2016) A personality trait contributes to the occurrence of postoperative delirium: a prospective study. BMC Psychiatry 16:371. https://doi.org/10.1186/s12888-016-1079-z

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mangold DL, Wand GS (2006) Cortisol and adrenocorticotropic hormone responses to naloxone in subjects with high and low neuroticism. Biol Psychiatry 60:850–855. https://doi.org/10.1016/j.biopsych.2006.03.049

    Article  CAS  PubMed  Google Scholar 

  87. Kleinschmidt A, Vuilleumier P (2013) Disconnecting cognition. Curr Opin Neurol 26:333–338. https://doi.org/10.1097/WCO.0b013e328363393b

    Article  PubMed  Google Scholar 

  88. Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Brain Res Rev 31:391–400

    Article  CAS  Google Scholar 

  89. Sanders RD (2011) Hypothesis for the pathophysiology of delirium: role of baseline brain network connectivity and changes in inhibitory tone. Med Hypotheses 77:140–143. https://doi.org/10.1016/j.mehy.2011.03.048

    Article  PubMed  Google Scholar 

  90. van Dellen E, van der Kooi AW, Numan T et al (2014) Decreased functional connectivity and disturbed directionality of information flow in the electroencephalography of intensive care unit patients with delirium after cardiac surgery. Anesthesiology 121:328–335. https://doi.org/10.1097/ALN.0000000000000329

    Article  PubMed  Google Scholar 

  91. Rapazzini P (2016) Functional interrelationship of brain aging and delirium. Aging Clin Exp Res 28:161–164. https://doi.org/10.1007/s40520-015-0379-3

    Article  PubMed  Google Scholar 

  92. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. https://doi.org/10.1196/annals.1440.011

    Article  PubMed  Google Scholar 

  93. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051. https://doi.org/10.1073/pnas.0604187103

    Article  CAS  PubMed  Google Scholar 

  94. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342. https://doi.org/10.1152/jn.90355.2008

    Article  PubMed  PubMed Central  Google Scholar 

  97. Horovitz SG, Braun AR, Carr WS et al (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA 106:11376–11381. https://doi.org/10.1073/pnas.0901435106

    Article  PubMed  Google Scholar 

  98. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61. https://doi.org/10.1038/nrn3857

    Article  CAS  PubMed  Google Scholar 

  99. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574. https://doi.org/10.1073/pnas.0800005105

    Article  PubMed  Google Scholar 

  100. Choi SH, Lee H, Chung TS et al (2012) Neural network functional connectivity during and after an episode of delirium. Am J Psychiatry 169:498–507. https://doi.org/10.1176/appi.ajp.2012.11060976

    Article  PubMed  Google Scholar 

  101. Perez DL, Catenaccio E, Epstein J (2011) Confusion hyperactive delirium and secondary mania in right hemispheric strokes a focused review of neuroanatomical correlates. Neurol Neurophysiol S 1:3. https://doi.org/10.4172/2155-9562.S1-003

    Article  Google Scholar 

  102. Bogousslavsky J, Ferrazzini M, Regli F et al (1988) Manic delirium and frontal-like syndrome with paramedian infarction of the right thalamus. J Neurol Neurosurg Psychiatry 51:116–119. https://doi.org/10.1136/jnnp.51.1.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bonhomme V, Vanhaudenhuyse A, Demertzi A et al (2016) Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125:873–888. https://doi.org/10.1097/ALN.0000000000001275

    Article  PubMed  Google Scholar 

  104. Qiu M, Scheinost D, Ramani R et al (2017) Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks. Neuroimage 148:130–140. https://doi.org/10.1016/j.neuroimage.2016.12.080

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hermans EJ, Henckens MJ, Joels M et al (2014) Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 37:304–314. https://doi.org/10.1016/j.tins.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  106. Chen CC, Lin MT, Tien YW et al (2011) Modified hospital elder life program: effects on abdominal surgery patients. J Am Coll Surg 213:245–252. https://doi.org/10.1016/j.jamcollsurg.2011.05.004

    Article  PubMed  Google Scholar 

  107. Marcantonio ER, Flacker JM, Wright RJ et al (2001) Reducing delirium after hip fracture: a randomized trial. J Am Geriatr Soc 49:516–522

    Article  CAS  Google Scholar 

  108. Page VJ, Davis D, Zhao XB et al (2014) Statin use and risk of delirium in the critically ill. Am J Respir Crit Care Med 189:666–673. https://doi.org/10.1164/rccm.201306-1150OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gamberini M, Bolliger D, Lurati BG et al (2009) Rivastigmine for the prevention of postoperative delirium in elderly patients undergoing elective cardiac surgery—a randomized controlled trial. Crit Care Med 37:1762–1768. https://doi.org/10.1097/CCM.0b013e31819da780

    Article  CAS  PubMed  Google Scholar 

  110. Lee C, Lee CH, Lee G et al (2018) The effect of the timing and dose of dexmedetomidine on postoperative delirium in elderly patients after laparoscopic major non-cardiac surgery: a double blind randomized controlled study. J Clin Anesth 47:27–32. https://doi.org/10.1016/j.jclinane.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  111. Kalisvaart KJ, de Jonghe JF, Bogaards MJ et al (2005) Haloperidol prophylaxis for elderly hip-surgery patients at risk for delirium: a randomized placebo-controlled study. J Am Geriatr Soc 53:1658–1666. https://doi.org/10.1111/j.1532-5415.2005.53503.x

    Article  PubMed  Google Scholar 

  112. Hakim SM, Othman AI, Naoum DO (2012) Early treatment with risperidone for subsyndromal delirium after on-pump cardiac surgery in the elderly: a randomized trial. Anesthesiology 116:987–997. https://doi.org/10.1097/ALN.0b013e31825153cc

    Article  CAS  PubMed  Google Scholar 

  113. Larsen KA, Kelly SE, Stern TA et al (2010) Administration of olanzapine to prevent postoperative delirium in elderly joint-replacement patients: a randomized, controlled trial. Psychosomatics 51:409–418. https://doi.org/10.1176/appi.psy.51.5.409

    Article  CAS  PubMed  Google Scholar 

  114. Avidan MS, Maybrier HR, Abdallah AB et al (2017) Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Lancet 390:267–275. https://doi.org/10.1016/S0140-6736(17)31467-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tanaka P, Goodman S, Sommer BR et al (2017) The effect of desflurane versus propofol anesthesia on postoperative delirium in elderly obese patients undergoing total knee replacement: a randomized, controlled, double-blinded clinical trial. J Clin Anesth 39:17–22. https://doi.org/10.1016/j.jclinane.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  116. Devlin JW, Roberts RJ, Fong JJ et al (2010) Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med 38:419–427. https://doi.org/10.1097/CCM.0b013e3181b9e302

    Article  CAS  PubMed  Google Scholar 

  117. Skrobik YK, Bergeron N, Dumont M et al (2004) Olanzapine vs haloperidol: treating delirium in a critical care setting. Intensive Care Med 30:444–449. https://doi.org/10.1007/s00134-003-2117-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81671045).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to articles selection, information synthesis, and paper drafting and editing. All authors approved the final version.

Corresponding author

Correspondence to Xia Shen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human participants or animal performed by any of the author.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shen, X. Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin Exp Res 30, 1287–1295 (2018). https://doi.org/10.1007/s40520-018-1008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-1008-8

Keywords

Navigation