Skip to main content

Advertisement

Log in

Emerging Applications of Optical Fiber-Based Devices for Brain Research

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Research in neuroscience and neuroengineering has attracted tremendous interest in the past decades. However, the complexity of the brain tissue, in terms of its structural, chemical, mechanical, and optical properties, makes the interrogation of biophysical and biochemical signals within the brain of living animals extremely challenging. As a viable and versatile tool for brain studies, optical fiber based technologies have provided exceptional opportunities to unravel the mysteries of the brain and open the door for clinical applications in the treatment, diagnosis, and prevention of neurological diseases. Typically, optical fibers with diameters from 10 to 1000 μm are capable of guiding and delivering light to deep levels of the living tissue. Moreover, small dimensions of such devices along with their flexibility and light weight paved the way for understanding the complex behaviours of living and freely moving mammals. This article provides a review of the emerging applications of optical fibers in neuroscience, specifically in the mammalian brain. Representative utilities, including optogenetics, fluorescence sensing, drug administration and phototherapy, are highlighted. We also discuss other biological applications of such implantable fibers, which may provide insights into the future study of brain. It is envisioned that these and other optical fiber based techniques offer a powerful platform for multi-functional neural activity sensing and modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Lindboe CF. Brain weight: what does it mean? Clin Neuropathol. 2003;22(6):263–5.

    CAS  Google Scholar 

  2. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37.

    Google Scholar 

  3. Keiser G, Xiong F, Cui Y, Shum PP. Review of diverse optical fibers used in biomedical research and clinical practice. J Biomed Opt. 2014;19(8):080902.

    Google Scholar 

  4. Li L, Liu C, Su Y, Bai J, Wu J, Han Y, Hou Y, Qi S, Zhao Y, Ding H, Yan Y, Yin L, Wang P, Luo Y, Sheng X. Heterogeneous Integration of microscale GaN light-emitting diodes and their electrical, optical, and thermal characteristics on flexible substrates. Adv Mater Technol. 2018;3(1):1700239.

    Google Scholar 

  5. Shim E, Chen Y, Masmanidis S, Li M. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications. Sci Rep. 2016;6:22693.

    CAS  Google Scholar 

  6. Mohanty A, Li Q, Tadayon MA, Roberts SP, Bhatt GR, Shim E, Ji X, Cardenas J, Miller S, Kepecs A, Lipson M. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat Biomed Eng. 2020;4(2):223–31.

    CAS  Google Scholar 

  7. Pisano F, Pisanello M, Lee SJ, Lee J, Maglie E, Balena A, Sileo L, Spagnolo B, Bianco M, Hyun M, De Vittorio M, Sabatini BL, Pisanello F. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat Methods. 2019;16(11):1185–92.

    CAS  Google Scholar 

  8. Sung C, Jeon W, Nam KS, Kim YJ, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B. 2020;8(31):6624–66.

    CAS  Google Scholar 

  9. Pisano F, Pisanello M, Sileo L, Qualtieri A, Sabatini BL, De Vittorio M, Pisanello F. Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectron Eng. 2018;195:41–9.

    CAS  Google Scholar 

  10. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–84.

    CAS  Google Scholar 

  11. Shabahang S, Seonghoon K, Seok HY. Light-guiding biomaterials for biomedical applications. Adv Funct Mater. 2018;28(24):1706635.

    Google Scholar 

  12. Xu H, Yin L, Liu C, Sheng X, Zhao N. Recent advances in biointegrated optoelectronic devices. Adv Mater. 2018. https://doi.org/10.1002/adma.201800156.

    Article  Google Scholar 

  13. Nazempour R, Zhang Q, Fu R, Sheng X. Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials. 2018;11(8):1283.

    Google Scholar 

  14. Canales A, Park S, Kilias A, Anikeeva P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc Chem Res. 2018;51(4):829–38.

    CAS  Google Scholar 

  15. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412.

    CAS  Google Scholar 

  16. Zhang Y, Ding J, Qi B, Tao W, Wang J, Zhao C, Peng H, Shi J. Multifunctional fibers to shape future biomedical devices. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201902834.

    Article  Google Scholar 

  17. Guo J, Yang C, Dai Q, Kong L. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors. 2019;19(17):3771.

    CAS  Google Scholar 

  18. Quandt BM, Scherer LJ, Boesel LF, Wolf M, Bona GL, Rossi RM. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles. Adv Healthcare Mater. 2015;4(3):330–55.

    CAS  Google Scholar 

  19. Kim MM, Darafsheh A. Light sources and dosimetry techniques for photodynamic therapy. Photochem Photobiol. 2020;96(2):280–94.

    CAS  Google Scholar 

  20. Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annu Rev Biomed Eng. 2014;16:103–29.

    CAS  Google Scholar 

  21. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535–51.

    CAS  Google Scholar 

  22. Jia X, Froriep U, Lu C, Wei L, Hou C, Tringides C, LaVine JD, Fink Y, Anikeeva P. Multimodality flexible fiber neural probes for in vivo simultaneous optical stimulation, electrical neural recording, and drug delivery. In: Abstracts from the 41st Neural Interfaces Conference. International Neuromodulation Society; 2014. pp. 10

  23. Li J, Ebendorff-Heidepriem H, Gibson BC, Greentree AD, Hutchinson MR, Jia P, Kostecki R, Liu G, Orth A, Ploschner M, Schartner EP, Warren-Smith SC, Zhang K, Tsiminis G, Goldys EM. Perspective: biomedical sensing and imaging with optical fibers—innovation through convergence of science disciplines. APL Photonics. 2018. https://doi.org/10.1063/1.5040861.

    Article  Google Scholar 

  24. Niyonambaza SD, Kumar P, Xing P, Mathault J, De Koninck P, Boisselier E, Boukadoum M, Miled A. A review of neurotransmitters sensing methods for neuro-engineering research. Appl Sci. 2019;9(21):4719.

    CAS  Google Scholar 

  25. Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. Int J Neuropsychopharmacol. 2015;18(11):pyv079.

    Google Scholar 

  26. Joshi J, Rubart M, Zhu W. Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front Bioeng Biotechnol. 2020;7:466.

    Google Scholar 

  27. Baldermann JC, Hardenacke K, Hu X, Köster P, Horn A, Freund HJ, Zilles K, Sturm V, Visser-Vandewalle V, Jessen F, Maintz D, Kuhn J. Neuroanatomical characteristics associated with response to deep brain stimulation of the nucleus basalis of Meynert for Alzheimer’s disease. Neuromodulation. 2018;21(2):184–90.

    Google Scholar 

  28. Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43(5):707–28.

    Google Scholar 

  29. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia. 2002;43(6):603–8.

    Google Scholar 

  30. Levinson DF. The genetics of depression: a review. Biol Psychiatry. 2006;60(2):84–92.

    CAS  Google Scholar 

  31. Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. 2006;26:10380–6.

    CAS  Google Scholar 

  32. Deisseroth K. Optogenetics. Nat Methods. 2011;8(1):26–9.

    CAS  Google Scholar 

  33. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature. 2012;488(7411):379–83.

    CAS  Google Scholar 

  34. Montagni E, Resta F, Mascaro ALA, Pavone FS. Optogenetics in brain research: from a strategy to investigate physiological function to a therapeutic tool. Photonics. 2019;6(3):92.

    CAS  Google Scholar 

  35. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213–25.

    CAS  Google Scholar 

  36. Sebastien R, Zemelman BV, Mladen Barbic M, Attila Losonczy A, György Buzsáki G, Jeffrey C, Magee JC. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurol. 2010;31(12):2279–91.

    Google Scholar 

  37. Zhang J, Farah Laiwalla F, Jennifer A, Kim JA, Hayato Urabe H, Rick Van Wagenen R, Yoon-Kyu Song YK, Barry W, Connors BW, Feng Zhang F, Karl Deisseroth K, Arto V, Nurmikko AV. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural eng. 2009;6(5):055007.

    Google Scholar 

  38. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater. 2017;2(2):1–16.

    CAS  Google Scholar 

  39. Wang L, Zhong C, Ke D, Ye F, Tu J, Wang L, Lu Y. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv Opt Mater. 2018. https://doi.org/10.1002/adom.201800427.

    Article  Google Scholar 

  40. Jackman SL, Chen CH, Chettih SN, Neufeld SQ, Drew IR, Agba CK, Flaquer I, Stefano AN, Kennedy TJ, Belinsky JE, Roberston K, Beron CC, Sabatini BL, Harvey CD, Regehr WG. Silk fibroin films facilitate single-step targeted expression of optogenetic proteins. Cell Rep. 2018;22(12):3351–61.

    CAS  Google Scholar 

  41. Fu R, Luo W, Nazempour R, Tan D, Ding H, Zhang K, Yin L, Guan J, Sheng X. Implantable and biodegradable poly (l-lactic acid) fibers for optical neural interfaces. Adv Opt Mater. 2018;6(3):1700941.

    Google Scholar 

  42. Zhang Y, Li X, Kim J, Tong Y, Thompson EG, Jiang S, Feng Z, Yu L, Wang J, Ha DS, Sontheimer H, Johnson BN, Jia X. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv Opt Mater. 2021;9(6):2001815.

    CAS  Google Scholar 

  43. Sileo L, Bitzenhofer SH, Spagnolo B, Pöpplau JA, Holzhammer T, Pisanello M, Pisano F, Bellistri E, Maglie E, De Vittorio M, Ruther P, Hanganu-Opatz IL, Pisanello F. Tapered fibers combined with a multi-electrode array for optogenetics in mouse medial prefrontal cortex. Front Neurosci. 2018;12:771.

    Google Scholar 

  44. Pisanello F, Mandelbaum G, Pisanello M, Oldenburg IA, Sileo L, Markowitz JE, Peterson RE, Della Patria A, Haynes TM, Emara MS, Spagnolo B, Datta SR, De Vittorio M, Sabatini BL. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat Neurosci. 2017;20(8):1180–8.

    CAS  Google Scholar 

  45. Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev. 2019;48(6):1826–52.

    CAS  Google Scholar 

  46. Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci. 2017;20(4):612–9.

    CAS  Google Scholar 

  47. Park S, Yuk H, Zhao R, Yim YS, Woldeghebriel EW, Kang J, Canales A, Fink Y, Choi GB, Zhao X, Anikeeva P. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat Commun. 2021;12:3435.

    CAS  Google Scholar 

  48. Jiang S, Patel DC, Kim J, Yang S, Iii WAM, Zhang Y, Wang K, Feng Z, Vijayan S, Cai W, Wang A, Guo Y, Kimbrough IF, Sontheimer H, Jia X. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat Commun. 2020;11(1):6115.

    CAS  Google Scholar 

  49. Guo Y, Werner CF, Canales A, Yu L, Jia X, Anikeeva P, Yoshinobu T. Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings. PLoS One. 2020;15(1):e0228076.

    CAS  Google Scholar 

  50. Kilias A, Canales A, Froriep UP, Park S, Egert U, Anikeeva P. Optogenetic entrainment of neural oscillations with hybrid fiber probes. J Neural Eng. 2018;15(5):056006.

    Google Scholar 

  51. Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015;33(3):277–84.

    CAS  Google Scholar 

  52. Du M, Huang L, Zheng J, Xi Y, Dai Y, Zhang W, Yan W, Tao G, Qiu J, So K, Ren C, Zhou S. Flexible fiber probe for efficient neural stimulation and detection. Adv Sci. 2020;7:2001410.

    CAS  Google Scholar 

  53. Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao S, Kang J, Moritz CT, Fink Y, Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv. 2017;3(3):e1600955.

    Google Scholar 

  54. Liu S, Nie J, Li Y, Yu T, Zhu D, Fei P. Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy. J Innovative Opt Health Sci. 2017;10(5):1743006.

    Google Scholar 

  55. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300.

    CAS  Google Scholar 

  56. Marshall JD, Li JZ, Zhang Y, Gong Y, St-Pierre F, Lin MZ, Schnitzer MJ. Cell-type-specific optical recording of membrane voltage dynamics in freely moving mice. Cell. 2016;167(6):1650–62.

    CAS  Google Scholar 

  57. Guo Q, Zhou J, Feng Q, Lin R, Gong H, Luo Q, Zeng S, Luo M, Fu L. Multi-channel fiber photometry for population neuronal activity recording. Biomed Opt Express. 2015;6(10):3919–31.

    CAS  Google Scholar 

  58. Sych Y, Chernysheva M, Sumanovski LT, Helmchen F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods. 2019;16(6):553.

    CAS  Google Scholar 

  59. Meng C, Zhou J, Papaneri A, Peddada T, Xu K, Cui G. Spectrally resolved fiber photometry for multi-component analysis of brain circuits. Neuron. 2018;98(4):707–17.

    CAS  Google Scholar 

  60. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19(3):267–94.

    CAS  Google Scholar 

  61. Schiff SJ, Somjen GG. The effects of temperature on synaptic transmission in hippocampal tissue slices. Brain Res. 1985;345(2):279–84.

    CAS  Google Scholar 

  62. Zibaii MI, Latifi H, Karami F, Ronaghi A, Nejad SC, Dargahi L. In vivo brain temperature measurements based on fiber optic Bragg grating. In: 2017 25th optical fiber sensors conference (OFS). IEEE; 2017. pp. 1–4

  63. Musolino S, Schartner EP, Tsiminis G, Salem A, Monro TM, Hutchinson MR. Portable optical fiber probe for in vivo brain temperature measurements. Biomed Opt Express. 2016;7(8):3069–77.

    CAS  Google Scholar 

  64. Musolino ST, Schartner EP, Hutchinson MR, Salem A. Improved method for optical fiber temperature probe implantation in brains of free-moving rats. J Neurosci Methods. 2019;313:24–8.

    Google Scholar 

  65. Shin J, Liu Z, Bai W, Liu Y, Yan Y, Xue Y, Kandela I, Pezhouh M, MacEwan MR, Huang Y, Ray WZ, Zhou W, Rogers JA. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Adv Sci. 2019. https://doi.org/10.1126/sciadv.aaw1899.

    Article  Google Scholar 

  66. Bai W, Shin J, Fu R, Kandela I, Lu D, Ni X, Park Y, Liu Z, Hang T, Wu D, Liu Y, Haney CR, Stepien I, Yang Q, Zhao J, Nandoliya KR, Zhang H, Sheng X, Yin L, MacRenaris K, Brikha A, Aird F, Pezhouh M, Hornick J, Zhou W, Rogers JA. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat Biomed Eng. 2019;3(8):644–54.

    Google Scholar 

  67. Vo-Dinh T. Biomedical photonics handbook: biomedical diagnostics. Boca Raton: CRC Press; 2014.

    Google Scholar 

  68. Rejmstad P, Zsigmond P, Wårdell K. Oxygen saturation estimation in brain tissue using diffuse reflectance spectroscopy along stereotactic trajectories. Opt Express. 2017;25(7):8192–201.

    Google Scholar 

  69. Hillman EM. Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt. 2007;12(5):051402.

    Google Scholar 

  70. Yu L, Wu Y, Dunn JF, Murari K. In-vivo monitoring of tissue oxygen saturation in deep brain structures using a single fiber optical system. Biomed Opt Express. 2016;7(11):4685–94.

    Google Scholar 

  71. Yu L, Thurston EM, Hashem M, Dunn JF, Whelan PJ, Murari K. Fiber photometry for monitoring cerebral oxygen saturation in freely-moving rodents. Biomed Opt Express. 2020;11(7):3491–506.

    CAS  Google Scholar 

  72. Singh R, Bathaei MJ, Istif E, Beker L. A review of bioresorbable implantable medical devices: materials, fabrication, and implementation. Adv Healthc Mater. 2020;9(18):e200070.

    Google Scholar 

  73. Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors. 2014;14(9):17686–702.

    Google Scholar 

  74. Correia R, James S, Lee SW, Morgan SP, Korposh S. Biomedical application of optical fibre sensors. J Opt. 2018;20(7):073003.

    Google Scholar 

  75. Poeggel S, Tosi D, Duraibabu D, Leen G, McGrath D, Lewis E. Optical fibre pressure sensors in medical applications. Sensors. 2015;15(7):17115–48.

    Google Scholar 

  76. Kanellos GT, Papaioannou G, Tsiokos D, Mitrogiannis C, Nianios G, Pleros N. Two-dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt Express. 2010;18(1):179–86.

    CAS  Google Scholar 

  77. Ahmad H, Chong WY, Thambiratnam K, Zulklifi MZ, Poopalan P, Thant MMM, Harun SW. High sensitivity fiber Bragg grating pressure sensor using thin metal diaphragm. IEEE Sens J. 2009;9(12):1654–9.

    Google Scholar 

  78. Islam M, Ali MM, Lai MH, Lim KS, Ahmad H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors. 2014;14(4):7451–88.

    Google Scholar 

  79. Sarbu MI, Matei C, Mitran CI, Mitran MI, Caruntu C, Constantin C, Neagu M, Georgescu SR. Photodynamic therapy: a hot topic in dermato-oncology. Oncol Lett. 2019;17(5):4085–93.

    Google Scholar 

  80. Wang J, Dong J. Optical waveguides and integrated optical devices for medical diagnosis, health monitoring and light therapies. Sensors. 2020;20(14):3981.

    CAS  Google Scholar 

  81. Liu H, Daly L, Rudd G, Khan AP, Mallidi S, Liu Y, Cuckov F, Hasan T, Celli JP. Development and evaluation of a low-cost, portable, LED-based device for PDT treatment of early-stage oral cancer in resource-limited settings. Lasers Surg Med. 2019;51(4):345–51.

    Google Scholar 

  82. Song D, Chi S, Li X, Wang C, Li Z, Liu Z. Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency. ACS Appl Mater Interfaces. 2019;11(44):41100–8.

    CAS  Google Scholar 

  83. Kang JH, Ko YT. Dual-selective photodynamic therapy with a mitochondria-targeted photosensitizer and fiber optic cannula for malignant brain tumors. Biomater Sci. 2019;7(7):2812–25.

    CAS  Google Scholar 

  84. Teh DBL, Bansal A, Chai C, Toh TB, Tucker RAJ, Gammad GGL, Yeo Y, Lei Z, Zheng X, Yang F, Ho JS, Bolem N, Wu BC, Gnanasammandhan MK, Hooi L, Dawe GS, Libedinsky C, Ong W, Halliwell B, Chow EK, Lim K, Zhang Y, Kennedy BK. A flexi-PEGDA upconversion implant for wireless brain photodynamic therapy. Adv Mater. 2020. https://doi.org/10.1002/adma.202001459.

    Article  Google Scholar 

  85. Park J, Jin K, Sahasrabudhe A, Chiang PH, Maalouf JH, Koehler F, Rosenfeld D, Rao S, Tanaka T, Khudiyev T, Schiffer ZJ, Fink Y, Yizhar O, Manthiram K, Anikeeva P. In situ electrochemical generation of nitric oxide for neuronal modulation. Nat Nanotechnol. 2020;15(8):690–7.

    CAS  Google Scholar 

  86. Frank JA, Antonini MJ, Chiang PH, Canales A, Konrad DB, Garwood IC, Rajic G, Koehler F, Fink Y, Anikeeva P. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem Neurosci. 2020;11:3802.

    CAS  Google Scholar 

  87. Magnotta VA, Hye-Young Heo HY, Brian J, Dlouhy BJ, Nader S, Dahdaleh NS, Robin L, Follmer RL, Daniel R, Thedens DR, Michael J, Welsh MJ, John A, Wemmie JA. Detecting activity-evoked pH changes in human brain. Proc Natl Acad Sci USA. 2012;109(21):8270–3.

    CAS  Google Scholar 

  88. Mathew T, Yin Pun Hung YP, Gary Yellen G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc. 2011;133(26):10034–7.

    Google Scholar 

  89. Takmakov P, Matthew K, Zachek MK, Richard B, Keithley RB, Elizabeth S, Bucher ES, Gregory S, McCarty GS, Mark R, Wightman RM. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes. Anal Chem. 2010;82(23):9892–900.

    CAS  Google Scholar 

  90. Guo Y, Carl Frederik Werner CF, Shoma Handa S, Mengyun Wang M, Tomokazu Ohshiro T, Hajime Mushiake H, Tatsuo Yoshinobu T. Miniature multiplexed label-free pH probe in vivo. Biosens Bioelectron. 2021;174:112870.

    CAS  Google Scholar 

  91. Yu X, Zhang S, Olivo M, Li N. Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications. Photonics Res. 2020;8(11):1703–24.

    CAS  Google Scholar 

  92. Guo J, Liu X, Jiang N, Yetisen AK, Yuk H, Yang C, Khademhosseini A, Zhao X, Yun SH. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater. 2016;28(46):10244–9.

    CAS  Google Scholar 

  93. Yetisen AK, Jiang N, Fallahi A, Montelongo Y, Ruiz-Esparza GU, Tamayol A, Zhang YS, Mahmood I, Yang SA, Kim KS, Butt H, Khademhosseini A, Yun SH. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater. 2017. https://doi.org/10.1002/adma.201606380.

    Article  Google Scholar 

  94. Kennedy RT, Watson CJ, Haskins WE, Powell DH, Strecker RE. In vivo neurochemical monitoring by microdialysis and capillary separations. Curr Opin Chem Biol. 2002;6(5):659–65.

    CAS  Google Scholar 

  95. Phillips PEM, Wightman RM. Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trends Anal Chem. 2003;22(9):509–14.

    CAS  Google Scholar 

  96. Keithley RB, Takmakov P, Bucher ES, Belle AM, Owesson-White CA, Park J, Wightman RM. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal Chem. 2011;83(9):3563–71.

    CAS  Google Scholar 

  97. Zibaii MI, Latifi H, Asadollahi A, Bayat AH, Dargahi L, Haghparast A. Label free fiber optic apta-biosensor for in-vitro detection of dopamine. J Lightwave Technol. 2016;34(19):4516–24.

    CAS  Google Scholar 

  98. Ribaut C, Loyez M, Larrieu J, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis. Biosens Bioelectron. 2016;92:449–56.

    Google Scholar 

  99. Jiang S, Song J, Zhang Y, Nie M, Kim J, Marcano AL, Kadlec K, Mills WA, Yan X, Liu H, Tong R, Wang H, Kimbrough IF, Sontheimer H, Zhou W, Jia X. Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable fabrication. Acs Appl Mater Interfaces. 2021;13(7):9156–65.

    CAS  Google Scholar 

  100. Jiang Y, Qi W, Zhang Q, Liu H, Zhang J, Du N, Nazempour R, Su Y, Fu R, Zhang K, Lyu P, Dong F, Yin L, Sheng X, Wang Y. Green Light-based photobiomodulation with an implantable and biodegradable fiber for bone regeneration. Small Methods. 2020. https://doi.org/10.1002/smtd.201900879.

    Article  Google Scholar 

  101. Yan W, Qu Y, Das Gupta T, Darga A, Dang Tung N, Page AG, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29(27):1700681.

    Google Scholar 

  102. Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen-Dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Loffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol. 2020;15:875–82.

    CAS  Google Scholar 

  103. Yan W, Tung ND, Cayron C, Das Gupta T, Page AG, Qu Y, Sorin F. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt Mater Express. 2017;7(4):1388–97.

    CAS  Google Scholar 

  104. Tung ND, Page AG, Qu Y, Volpi M, Yan W, Sorin F. Multi-material micro-electromechanical fibers with bendable functional domains. J Phys D Appl Phys. 2017;50(14):144001.

    Google Scholar 

  105. Tung ND, de Luca AC, Yan W, Qu Y, Page AG, Volpi M, Das Gupta T, Lacour SP, Sorin F. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv Funct Mater. 2017;27(10):1605935.

    Google Scholar 

  106. Sordo F, Janecek ER, Qu Y, Michaud V, Stellacci F, Engmann J, Wooster TJ, Sorin F. Microstructured fibers for the production of food. Adv Mater. 2019;31(14):1807282.

    Google Scholar 

  107. Dong C, Page AG, Yan W, Nguyen-Dang T, Sorin F. Microstructured multimaterial fibers for microfluidic sensing. Adv Mater Technol. 2019;4(10):1900417.

    CAS  Google Scholar 

  108. Lee Y, Canales A, Loke G, Kanik M, Fink Y, Anikeeva P. Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent Sci. 2020;6(12):2319–25.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank financial support from the National Natural Science Foundation of China (NSFC) (61874064, X.S.), Beijing Municipal Natural Science Foundation (4202032), the Beijing Innovation Center for Future Chips, Tsinghua University, and the Beijing National Research Center for Information Science and Technology (BNR2019ZS01005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Sheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazempour, R., Zhang, B., Ye, Z. et al. Emerging Applications of Optical Fiber-Based Devices for Brain Research. Adv. Fiber Mater. 4, 24–42 (2022). https://doi.org/10.1007/s42765-021-00092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00092-w

Keywords

Navigation