Skip to main content
Log in

A computer model of fractal myocardial perfusion heterogeneity to elucidate mechanisms of changes in critical coronary stenosis and hypotension

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Critical coronary stenosis (critical CS) alone does not lead to an alteration of fractal dimension (D) under resting conditions in a pig model, indicating undisturbed local myocardial perfusion. If critical CS is combined with hypovolemic anemia the resulting hypotension leads to a significant decline of D. The mechanisms involved in this phenomenon have not yet been elucidated.

A computer program was developed enabling calculation of D for normal vascular trees, for single vessel coronary stenosis (CS), and for CS in combination with reduced coronary perfusion pressure (CPP). The values of D obtained by the computer program were compared to those available from an existing animal study to confirm that changes of D can largely be explained by changes of arterial branching pattern simulated by the computer program.

Using our computer model, D was 1.15 ± 0.06 in normal vascular trees. Third branch critical CS did not alter D (1.14±0.06; n.s.), wheras critical CS combined with a reduction of CPP to 40 mmHg reduced D (1.07 ± 0.03; P < 0.05). These data are comparable to those obtained in the animal study, and therefore show that alterations of vessel diameter and regional blood flow can largely explain changes of fractal dimension during critical CS and hypotension while changes of functional myocardial parameters might play a minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassingthwaighte, J. B., R. B. King and S. A. Roger (1989). Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65, 578–590.

    Google Scholar 

  • Bassingthwaighte, J. B., J. H. van Beek and R. B. King (1990). Fractal branchings: the basis of myocardial flow heterogeneities? Ann. NY Acad. Sci. 591, 392–401.

    Google Scholar 

  • Beard, D. A. and J. B. Bassingthwaighte (2000). The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37, 282–296.

    Article  Google Scholar 

  • Canty, J. J., J. Giglia and D. Kandath (1990). Effect of tachycardia on regional function and transmural myocardial perfusion during graded coronary pressure reduction in conscious dogs. Circulation 82, 1815–1825.

    Google Scholar 

  • Cousineau, D. F., C. A. Goresky, J. R. Rouleau and C. P. Rose (1994). Microsphere and dilution measurements of flow and interstitial space in dog heart. J. Appl. Physiol. 77, 113–120.

    Google Scholar 

  • Deussen, A., C. W. Flesche, T. Lauer, M. Sonntag and J. Schrader (1996). Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation. Pfluegers Arch. 432, 451–461.

    Article  Google Scholar 

  • Galassi, A. R., F. Crea, L. I. Araujo, A. A. Lammertsma, G. Pupita, Y. Yamamoto, E. Rechavia, T. Jones, J. C. Kaski and A. Maseri (1993). Comparison of regional blood flow in Syndrome X and one-vessel coronary artery disease. Am. J. Cardiol. 72, 134–139.

    Article  Google Scholar 

  • Glenny, R. W., H. T. Robertson, S. Yamashiro and J. B. Bassingthwaighte (1991). Applications of fractal analysis to physiology. J. Appl. Physiol. 70, 2351–2367.

    Google Scholar 

  • Gould, K. L., K. Lipscomb and W. Hamilton (1974). Physiological basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 33, 87–94.

    Article  Google Scholar 

  • Hickey, R., P. Sybert, E. Verrier and B. Cason (1988). Effects of halothane, enflurane, and isoflurane on coronary blood flow autoregulation and coronary vascular reserve in the canine heart. Anesthesiology 68, 21–30.

    Google Scholar 

  • Hirasawa, K., T. Sugimoto, T. Nohara, N. Ohya and T. Inasaka (1974). Influence of changes in heart rate, aortic pressure and flow rate upon experimental coronary insufficiency. Cardiology 59, 213–221.

    Article  Google Scholar 

  • Iversen, P. O. and G. Nicolaysen (1995). Fractals describe blood flow heterogeneity within skeletal muscle and within myocardium. Am. J. Physiol. 268, H112–H116.

    Google Scholar 

  • Jones, C., L. Kuo, M. Davis and W. Chilian (1993a). Distribution and control of coronary microvascular resistance. Adv. Exp. Med. Biol. 346, 181–188.

    Google Scholar 

  • Jones, C., L. Kuo, M. Davis and W. Chilian (1993b). Myogenic and flow-dependent control mechanisms in the coronary microcirculation. Basic Res. Cardiol. 88, 2–10.

    Google Scholar 

  • Kendal, W. S. (2001). A stochastic model for the self-similar heterogeneity of regional organ blood flow. PNAS 98, 837–841.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R. B. and J. B. Bassingthwaighte (1989). Temporal fluctuations in regional myocardial flows. Pfluegers Arch. 413, 336–342.

    Article  Google Scholar 

  • King, R. B., J. B. Bassingthwaighte, J. R. Hales and L. B. Rowell (1985). Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57, 285–295.

    Google Scholar 

  • Kleen, M., O. Habler, J. Hutter, A. Podtschaske, M. Tiede, G. Kemming, M. Welte, C. Corso and K. Messmer (1997a). Normovolemic hemodilution and hyperoxia have no effect on fractal dimension of regional myocardial perfusion in dogs. Acta. Physiol. Scand. 162, 439–446.

    Article  Google Scholar 

  • Kleen, M., M. Welte, P. Lackermeier, O. Habler, G. Kemming and K. Messmer (1997b). Myocardial blood flow heterogeneity in shock and small-volume resuscitation in pigs with coronary stenosis. J. Appl. Physiol. 83, 1832–1841.

    Google Scholar 

  • Kuo, L., M. Davis and W. Chilian (1988). Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 255, H1558–H1562.

    Google Scholar 

  • Kuo, L., M. Davis and W. Chilian (1990a). Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 256, 1063–1070.

    Google Scholar 

  • Kuo, L., W. Chilian and M. Davis (1990b). Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66, 860–866.

    Google Scholar 

  • Mori, H., M. Chujo, S. Haruyama, H. Sakamoto, Y. Shinozaki, M. Uddin-Mohammed, A. Iida and H. Nakazawa (1995). Local continuity of myocardial blood flow studied by monochromatic synchrotron radiation-excited X-ray fluorescence spectrometry. Circ. Res. 76, 1088–1100.

    Google Scholar 

  • Park, K., E. Lowenstein, H. Dai, J. Lopez, A. Stamler, F. Simons and M. Sellke (1996). Direct vasomotor effects of isoflurane in subepicardial resistance vessels from collateral-dependent and normal coronary circulation of pigs. Anesthesiology 85, 584–591.

    Article  Google Scholar 

  • Schreiner, W., R. Karch, F. Neumann, M. Neumann, S. M. Rodler and E. End (2002). Adaptive Growth and optimization of coronary arterial tree models. Int. J. Bioelectromagnetism. Available from: http://ee.tut.fi/rgi/ijbem/volume2/number2/schreiner/paper_ijbem.htm.

  • Sonntag, M., A. Deussen, J. Schultz, R. Loncar, W. Hort and J. Schrader (1996). Spatial heterogeneity of blood flow in dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pfluegers Arch. 432, 439–450.

    Article  Google Scholar 

  • van Beek, J. H., S. A. Roger and J. B. Bassingthwaighte (1989). Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257, H1670–H1680.

    Google Scholar 

  • van Bavel, E. and J. Spaan (1992). Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res. 71, 1200–1212.

    Google Scholar 

  • Zamir, M. (1988). Distributing and delivering vessels of the human heart. J. Gen. Physiol. 91, 725–735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Kleen, M. & Messmer, K. A computer model of fractal myocardial perfusion heterogeneity to elucidate mechanisms of changes in critical coronary stenosis and hypotension. Bull. Math. Biol. 66, 1155–1171 (2004). https://doi.org/10.1016/j.bulm.2003.11.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.11.005

Keywords

Navigation