Skip to main content
Log in

Time dependence of the mechanical properties of GICs in simulated physiological conditions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical properties of glass-ionomer cements (GICs) have been satisfactory for dental applications and have shown their potential in orthopedic surgery. Because the physiological environment in orthopedics is different from dentistry by unavoidable contamination with blood and other fluids such as normal saline used during an operation, the determination of GICs for orthopedic applications should be performed in an appropriate environment. The properties of a novel resin-modified GIC, S430, for orthopedic applications were evaluated in simulated orthopedic conditions by an early exposure to and long-term storage in normal saline. An early exposure to normal saline caused 20–60% reduction of its compressive and flexural properties, whereas long-term storage in normal saline showed slight changes of its mechanical properties. The effects were probably due to the disturbance of the cross-linking formation in the acid-base reaction and also the reduction of electrostatic interactions of the cross-linking polymeric chain of hydroxyethyl methacrylate (HEMA) in resin-modified GIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Wilson and B. E. Kent, J. Appl. Chem. Biotech. 21 (1971) 313.

    Google Scholar 

  2. M. Rothwell, H. M. Anstice and G. J. Pearson, J. Dent. 26 (1998) 591.

    Google Scholar 

  3. P. J. Doherty, Clin. Mater. 7 (1991) 335.

    Google Scholar 

  4. A. Oliva, R. F. Della, A. Salerno, V. Riccio, G. Tartaro, A. Cozzolino, S. D'Amato, G. Pontoni and V. Zappia, Biomaterials 17 (1996) 1351.

    Google Scholar 

  5. J. W. Mclean and A. D. Wilson, Br. Dent. J. 136 (1974) 269.

    Google Scholar 

  6. L. M. Jonck, C. J. Grobbelaar and H. Strating, Clin. Mater. 4 (1989) 201.

    Google Scholar 

  7. L. M. Jonck and C. J. Grobbelaar, ibid. 6 (1990) 323.

    Google Scholar 

  8. S. Crisp, B. G. Lewis and A. D. Wilson, J. Dent. 4 (1976) 287.

    Google Scholar 

  9. S. Crisp, B. G. Lewis and A. D. Wilson, ibid. 5 (1977) 51.

    Google Scholar 

  10. E. De Barra and R. G. Hill, Biomaterials 19 (1998) 495.

    Google Scholar 

  11. S. G. Griffin and R. G. Hill, J. Mater. Sci. 33 (1998) 5383.

    Google Scholar 

  12. S. G. Griffin and R. G. Hill, Biomaterials 20 (1999) 1579.

    Google Scholar 

  13. S. G. Griffin and R. G. Hill, ibid. 21 (2000) 399.

    Google Scholar 

  14. E. De Barra and R. G. Hill, ibid. 21 (2000) 563.

    Google Scholar 

  15. S. G. Griffin and R. G. Hill, ibid. 21 (2000) 693.

    Google Scholar 

  16. A. D. Wilson, Int. J. Prost. 3 (1990) 425.

    Google Scholar 

  17. Y. Momoi, K. Hirosaki, A. Kohno and J. F. Mccabe, Dent. Mater. J. 14 (1995) 109.

    Google Scholar 

  18. S. Gladys, B. Van Meerbeek, M. Braem, P. Lambrechts and G. Vanherle, J. Dent. Res. 76 (1997) 883.

    Google Scholar 

  19. A. W. Walls, J. Adamson, J. F. Mccabe and J. J. Murray, Dent. Mater. 3 (1987) 113.

    Google Scholar 

  20. J. J. Simmons, J. Am. Dent. Assoc. 120 (1990) 49.

    Google Scholar 

  21. R. E. Kerby and R. F. Bleiholder, J. Dent. Res. 70 (1991) 1358.

    Google Scholar 

  22. C. W. B. Oldfield and B. Ellis, Clin. Mater. 7 (1991) 313.

    Google Scholar 

  23. K. H. Chung, J. Oral Rehab. 20 (1993) 79.

    Google Scholar 

  24. N. K. Sarkar, Dent. Mater. 15 (1999) 421.

    Google Scholar 

  25. M. Kobayashi, M. Kon, K. Miyai and K. Asaoka, Biomaterials 21 (2000) 2051.

    Google Scholar 

  26. B. E. Causton, ibid. 2 (1981) 112.

    Google Scholar 

  27. M. A. Cattani-Lorente, C. Godin and J. M. Meyer, Dent. Mater. 10 (1994) 37.

    Google Scholar 

  28. A. Akashi, Y. Matsuya, M. Unemori and A. Akamine, Biomaterials 20 (1999) 1573.

    Google Scholar 

  29. M. A. Cattani-Lorente, V. Dupuis, J. Payan, F. Moya and J. M. Meyer, Dent. Mater. 15 (1999) 71.

    Google Scholar 

  30. H. J. Prosser, D. R. Powis and A. D. Wilson, J. Dent. Res. 65 (1986) 146.

    Google Scholar 

  31. J. A. Williams and R. W. Billington, J. Oral Rehab. 16 (1989) 475.

    Google Scholar 

  32. M. A. Cattani-Lorente, C. Godin and J. M. Meyer, Dent. Mater. 9 (1993) 57.

    Google Scholar 

  33. V. H. W. Khouw-Liu, H. M. Anstice and G. J. Pearson, J. Dent. 27 (1999) 351.

    Google Scholar 

  34. D. Xie, W. A. Brantley, B. M. Culbertson and G. Wang, Dent. Mater. 16 (2000) 129.

    Google Scholar 

  35. W. A. J. Higgs, P. Lucksanasombool, R. J. E. D. Higgs and M. V. Swain, J. Mater. in Med. 12 (2001) 453.

    Google Scholar 

  36. J. E. Hocket and P. P. Gillis, Int. J. Mech. Sci. 13 (1971) 251.

    Google Scholar 

  37. J. E. Hocket and P. P. Gillis, ibid. 13 (1971) 265.

    Google Scholar 

  38. K. J. Karisallen and J. Morrison, Exp. Mech. 29 (1989) 152.

    Google Scholar 

  39. D. E. Turek, Polymer. Eng. Sci. 33 (1993) 328.

    Google Scholar 

  40. S. R. Kalidindi, A. Abusafieh and E. E-Danaf, Exp. Mech. 37 (1997) 210.

    Google Scholar 

  41. ASTM Standards D3379, in “American Society for Testing and Materials” (Philadelphia, PA, 1982).

  42. W. A. J. Higgs, P. Lucksanasombool, R. J. Higgs and M. V. Swain, J. Biomedical Materials Res. 58 (2001) 188.

    Google Scholar 

  43. ISO 9917, in “International Organization for Standardization” (Geneve 20, Switzerland, 1991).

  44. ISO 5833, in “International Organization for Standardization” (Geneve 20, Switzerland, 1992).

  45. ASTM Standards E399-83, in “American Society for Testing and Materials” (Philadelphia, PA, 1983).

  46. N. E. Dowling, “Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue” (Prentice Hall, New Jersey 07458, 1993).

    Google Scholar 

  47. C. A. Mitchell, W. H. Douglas and Y.-S. Cheng, Dent. Mater. 15 (1999) 7.

    Google Scholar 

  48. D. C. Smith, Biomaterials 19 (1998) 467.

    Google Scholar 

  49. P. Lucksanasombool, W. A. J. Higgs, R. J. Higgs and M. V. Swain, J. Mater. Sci. 37 (2002) 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Swain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucksanasombool, P., Higgs, W.A.J., Higgs, R.J.E.D. et al. Time dependence of the mechanical properties of GICs in simulated physiological conditions. Journal of Materials Science: Materials in Medicine 13, 745–750 (2002). https://doi.org/10.1023/A:1016158605482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016158605482

Keywords

Navigation