Skip to main content
Log in

Inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rat muscle

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Continuous low-frequency stimulation (CLFS) by implanted electrodes for 12–24 h led to a significant (∼30%) decrease in the activity of sarcoplasmic reticulum Ca2+-ATPase in fast-twitch extensor digitorum longus (EDL) and tibialis anterior (TA) muscles of intact rats. The decline in catalytic activity after 24 h of CLFS was accompanied by an approximately twofold increase in dinitrophenylhydrazine-reactive carbonyl groups of the enzyme. It also correlated with an immunochemically determined 30% decrease in Ca2+-ATPase protein. Recovery studies after 12 h of CLFS revealed a relatively slow (48–72 h) re-establishment of normal catalytic activity. These findings suggest that the 30% decline of Ca2+-ATPase activity in low-frequency stimulated rat muscle led to an irreversible modification by protein oxidation. The decrease in Ca2+-ATPase protein most likely resulted from the degradation of inactive Ca2+-ATPase molecules. The relatively slow recovery of Ca2+-ATPase activity suggests that de novo synthesis of the enzyme may be necessary to re-attain normal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcastro AN, Gilchrist JS and Scrubb J (1993) Function of skeletal muscle sarcoplasmic reticulum vesicles with exercise. J Appl Physiol 75: 2412–2418.

    PubMed  CAS  Google Scholar 

  • Belcastro AN, Rossiter M, Low MP and Sopper MM (1981) Calcium activation of sarcoplasmic reticulum ATPase following strenuous activity. Can J Physiol Pharmacol 59: 1214–1218.

    PubMed  CAS  Google Scholar 

  • Bradd SJ and Dunn MJ (1993) Analysis of membrane proteins by Western blotting and enhanced chemiluminescence. Methods Mol Biol 19: 211–218.

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Byrd SK (1992) Alterations in the sarcoplasmic reticulum – a possible link to exercise-induced muscle damage. Med Sci Sports Exerc 24: 531–536.

    PubMed  CAS  Google Scholar 

  • Carroll S, Nicotera P and Pette D (1999) Calcium transients in single fibers of low-frequency stimulated fast-twitch muscle of rat. Am J Physiol 277: C1122–C1129.

    PubMed  CAS  Google Scholar 

  • Chin ER and Green HJ (1996) Effects of tissue fractionation on exercise-induced alterations in SR function in rat gastrocnemius muscle. J Appl Physiol 80: 940–948.

    PubMed  CAS  Google Scholar 

  • Chin ER, Green HJ, Grange F, Dossett-Mercer J and O'Brian PJ (1995) Effects of prolonged low frequency stimulation on skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol 73: 1154–1164.

    PubMed  CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yano Q, Humphries C, Shelton JM, Wu H, Zhu WG, Basselduby R and Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Gene Develop 12: 2499–2509.

    CAS  Google Scholar 

  • Conjard A, Peuker H and Pette D (1998) Energy state and myosin isoforms in single fibers of normal and transforming rabbit muscles. Pflügers Arch 436: 962–969.

    Article  PubMed  CAS  Google Scholar 

  • Dux L, Green HJ and Pette D (1990) Chronic low-frequency stimulation of rabbit fast-twitch muscle induces partial inactivation of the sarcoplasmic reticulum Ca2+-ATPase and changes in its tryptic cleavage. Eur J Biochem 192: 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Lömo T and Clausen T (1993) Changes in K +, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle. Acta Physiol Scand 147: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Ferrington DA, Reijneveld JC, Bar PR and Bigelow DJ (1996) Activation of the sarcoplasmic reticulum Ca2+-ATPase induced by exercise. Biochim Biophys Acta 1279: 203–213.

    Article  PubMed  Google Scholar 

  • Green HJ(1998) Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 162: 201–213.

    Google Scholar 

  • Green HJ, Düsterhöft S, Dux L and Pette D (1992) Metabolite patterns related to exhaustion, recovery, and transformation of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 420: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Harmon S, Froemming GR, Leisner E, Pette D and Ohlendieck K (2001) Selected contribution: low-frequency stimulation of fast muscle affects the abundance of Ca(2+)-ATPase but not its oligomeric status. J Appl Physiol 90: 371–379.

    PubMed  CAS  Google Scholar 

  • Hämäläinen N and Pette D (1997) Coordinated fast-to-slow transitions of myosin and SERCA isoforms in chronically stimulated fast-twitch muscles of euthyroid and hyperthyroid rabbits. J Muscle Res Cell Motil 18: 545–554.

    Article  PubMed  Google Scholar 

  • Heilmann C and Pette D (1979) Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation. Eur J Biochem 93: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Hicks A, Ohlendieck K, Göpel SO and Pette D (1997) Early functional and biochemical adaptations to low-frequency stimulation of rabbit fast-twitch muscle. Am J Physiol 273: C297–C305.

    PubMed  CAS  Google Scholar 

  • Huber B and Pette D (1996) Dynamics of parvalbumin expression in low-frequency-stimulated fast-twitch rat muscle. Eur J Biochem 236: 814–819.

    Article  PubMed  CAS  Google Scholar 

  • Klebl BM, Ayoub AT and Pette D (1998) Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett 422: 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Läuger P (1991) Electrogenic Ion Pumps. Sinauer Assoc., Sunderland, MA, USA.

    Google Scholar 

  • Leberer E, Härtner K-T and Pette D (1987) Reversible inhibition of sarcoplasmic reticulum Ca-ATPase by altered neuromuscular activity in rabbit fast-twitch muscle. Eur J Biochem 162: 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Luckin KA, Favero TG and Klug GA (1991) Prolonged exercise induces structural changes in SR Ca2+-ATPase of rat muscle. Biochem Med Metab Biol 46: 391–405.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Rice WJ and Green NM (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+ ATPases. J Biol Chem 272: 28815–28818.

    Article  PubMed  CAS  Google Scholar 

  • Martonosi AN (1995) The structure and interactions of Ca2+-ATPase. Biosci Rep 15: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita S and Pette D (1992) Inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated muscle results from a modification of the active site. Biochem J 285: 303–309.

    PubMed  CAS  Google Scholar 

  • Murray BE and Ohlendieck K (1997) Cross-linking analysis of the ryanodine receptor and α1-dihydropyridine receptor in rabbit skeletal muscle triads. Biochem J 324: 689–696.

    PubMed  CAS  Google Scholar 

  • Nakamura H, Jilka RL, Boland R and Martonosi AN (1976) Mechanism of ATP hydrolysis by the sarcoplasmic reticulum and the role of phospholipids. J Biol Chem 251: 5414–5423.

    PubMed  CAS  Google Scholar 

  • Ohlendieck K (2000) Changes in Ca2+-regulatory muscle membrane proteins during the chronic low-frequency stimulation induced fast-to-slow transition process. Bas Appl Myol 10: 99–106.

    Google Scholar 

  • Olson EN and Williams RS (2000) Calcineurin signaling and muscle remodeling. Cell 101: 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119–1124.

    PubMed  CAS  Google Scholar 

  • Pette D and Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115: 359–372.

    PubMed  CAS  Google Scholar 

  • Pette D and Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev. Physiol Biochem Pharmacol 120: 116–202.

    Google Scholar 

  • Pette D and Vrbová G (1999) Invited review: what does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22: 666–677.

    Article  PubMed  CAS  Google Scholar 

  • Simoneau J-A and Pette D (1988) Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse, rat, guinea pig, and rabbit. Pflügers Arch 412: 86–92.

    PubMed  CAS  Google Scholar 

  • Simonides WS and van Hardeveld C (1990) An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal Biochem 191: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Squier TC and Bigelow DJ(2000) Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci 5: D504–D526.

    PubMed  CAS  Google Scholar 

  • Sréter FA, Lopez JR, Alamo L, Mabuchi K and Gergely J (1987) Changes in intracellular ionized Ca concentration associated with muscle fiber type transformation. Am J Physiol 253: C296–C300.

    PubMed  Google Scholar 

  • Sultan KR, Dittrich BT, Leisner E, Paul N and Pette D (2001) Fiber type-specific expression of major proteolytic systems in fast-to-slow transforming rabbit muscle. Am J Physiol 280: C239–C247.

    CAS  Google Scholar 

  • Sultan KR, Dittrich BT and Pette D (2000) Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat. Am J Physiol 279: C639–C647.

    CAS  Google Scholar 

  • Towbin H, Staehelin T and Gordon J(1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunaga, S., Harmon, S., Gohlsch, B. et al. Inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rat muscle. J Muscle Res Cell Motil 22, 685–691 (2001). https://doi.org/10.1023/A:1016310607568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016310607568

Keywords

Navigation