Skip to main content
Log in

Myelin P0: New Knowledge and New Roles

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protein zero (P0) is an integral transmembrane glycoprotein that serves as the major protein component of peripheral nerve myelin and is a member of the immunoglobulin (IgG) gene superfamily. As a cell adhesion molecule, P0 mediates homophilic adhesive interactions between Schwann cell plasma membranes and is a key structural constituent of both the major dense line and intraperiod line of compact myelin. Both the extracellular and cytoplasmic domains contribute to these interactions and evidence indicates that the post-translational modifications of the molecule, including glycosylation, acylation and phosphorylation, play an important modulatory role in adhesion and likely in the proper trafficking of P0 from the endoplasmic reticulum to the plasma membrane as well. Structural and genetic studies indicate that mutations in P0 producing human demyelinating diseases probably do so by perturbing or preventing homophilic interactions during myelination, or by producing cellular toxicity or an unstable myelin sheath. A variety of transcription factors, growth factors and neurosteroids both directly and indirectly influence P0 gene expression during maturation of the myelinating Schwann cell. Besides its structural function in myelin, P0 may have roles in the delivery of other Schwann cell proteins to their proper location, especially at or near nodes of Ranvier, and in neuronal-glial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Everly, J. I., Brady, R. O., and Quarles, R. H. 1973. Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein. J. Neurochem. 21:329-334.

    Google Scholar 

  2. Wood, J. G. and Dawson, R. M. C. 1974. Some properties of a major structural glycoprotein of sciatic nerve. J. Neurochem. 22:627-630.

    Google Scholar 

  3. Greenfield, S., Brostoff, S., Eylar, E. H., and Morell, P. 1973. Protein composition of the peripheral nervous system. J. Neurochem. 20:1207-1216.

    Google Scholar 

  4. Kitamura, K., Suzuki, M., Susuki, A., and Uyemura, K. 1976. Purification and partial characterization of two glycoproteins in bovine peripheral nerve membrane. Biochim. Biophys. Acta 455:806-816.

    Google Scholar 

  5. Roomi, M. W., Ishaque, A., Khan, A. R., and Eylar, E. H. 1978. The P0 protein: the major glycoprotein of peripheral nerve myelin. Biochim. Biophys. Acta 536:112-121.

    Google Scholar 

  6. Ishaque, A., Roomi, M. W., Szymanski, I., Kowalski, S., and Eylar, E. H. 1980. The P0 glycoprotein of peripheral nerve myelin. Can. J. Biochem. 58:913-921.

    Google Scholar 

  7. Wiggins, R. C. and Morell, P. 1980. Phosphorylation and fucosylation of myelin proteins in vitro by sciatic nerve from developing rats. J. Neurochem. 34:627-634.

    Google Scholar 

  8. Matthieu, J. M., Everly, J. R., Brady, R. O., and Quarles, R. H. 1975. [35]Sulfate incorporation into myelin glycoproteins. II. Peripheral nervous tissue. Biochim. Biophys. Acta 392:167-174.

    Google Scholar 

  9. Agrawal, H. C., Schmidt, R. E., and Agrawal, D. 1983. In vivo incorporation of [3H]palmitate into P0 protein, the major intrinsic protein of rat sciatic nerve myelin. J. Biol. Chem. 258: 6556-6560.

    Google Scholar 

  10. Trapp, B. D., Inoyama, Y., Sternberger, N. H., Quarles, R. H., and Webster, H. de F. 1981. Immunochemical localization of P0 in Golgi complex membranes and myelin of developing rat Schwann cells. J. Cell Biol. 90:1-6.

    Google Scholar 

  11. Kirschner, D. A. and Ganser, A. L. 1980 Compact myelin exists in the absence of myelin basic protein in the shiverer mutant mouse. Nature 283:207-210.

    Google Scholar 

  12. Lees, M. B. and Brostoff, S. W 1984. Proteins of myelin, pages 197-204, in Morell, P., (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  13. Uyemura, K., Kitamura, K, and Miura, M. 1992. Structure and molecular biology of P0 protein, pages 481-508, in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton, FL.

    Google Scholar 

  14. Spiryda, L. B. 1998. Myelin protein zero and membrane adhesion. J. Neurosci. Res. 54:137-146.

    Google Scholar 

  15. Sakamoto, Y., Kitamura, K., Yoshimura, K., Nishijima, T., and Uyemura, K. 1987. Complete amino acid sequence of P0 protein in bovine peripheral nerve myelin. J. Biol. Chem. 262:4208-4214.

    Google Scholar 

  16. Lemke, G. and Axel, R. 1985. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40:501-508.

    Google Scholar 

  17. Lemke, G., Lamar, E., and Patterson, J. 1988. Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron 1:75-83.

    Google Scholar 

  18. Bollensen, E. and Schachner, M. 1987. The peripheral myelin glycoprotein P0 expresses the L2/HNK-1 and L3 carbohydrate structures shared by neural adhesion molecules. Neurosci. Lett. 82:77-82.

    Google Scholar 

  19. Voshol, H., van Zuylen, C. W. E. M., Orberger, G., Vliegenthart, J. F. G., and Schachner, M. 1996. Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J. Biol. Chem. 271:22957-22960.

    Google Scholar 

  20. D'Urso, D., Brophy, P. J., Staugaitis, S. M., Gillespie, S., Frey, A. B., Stempak, J. G., and Colman, D. R. 1990. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 2:449-460.

    Google Scholar 

  21. Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A., and Tennekoon, G. I. 1990. Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344:871-872.

    Google Scholar 

  22. Schneider-Schaulies, J. U., von Brunn, A., and Schachner, M. 1990. Recombinant peripheral myelin protein P0 confers both adhesion and neurite outgrowth-promoting properties. J. Neurosci. Res. 27:286-297.

    Google Scholar 

  23. Shapiro, L., Doyle, J. P., Hensley, P., Colman, D. R., and Hendrickson, W. 1996. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17:435-449.

    Google Scholar 

  24. Inouye, H., Tsuruta, H., Sedzik, J., Uyemura, K., and Kirschner, D. A. 1999. Tetrameric assembly of full-sequence protein zero myelin glycoprotein by synchrotron x-ray scattering. Biophys. J. 76:423-437.

    Google Scholar 

  25. Thompson, A. J., Cronin, M. S., and Kirschner, D. A. 2002. Myelin protein zero exists as dimers and tetramers in native membranes of Xenopus laevis peripheral nerve. J. Neurosci. Res. 67:766-771.

    Google Scholar 

  26. D Urso, D., Ehrhardt, P., and Muller, H. W. 1999. Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. J. Neurosci. 19:3396-3403.

    Google Scholar 

  27. Griffith, L. S., Schmitz, B., and Schachner, M. 1992. L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion molecule P0. J. Neurosci. Res. 33:639-648.

    Google Scholar 

  28. Filbin, M. T. and Tennekoon, G. 1993. Homophilic adhesion of the myelin P0 protein requires glycosylation of both molecules in the homophilic pair. J. Cell Biol. 122:451-459.

    Google Scholar 

  29. Filbin, M. T., Zhang, K., Li, W., and Gao, Y. 1999. Characterization of the effect on adhesion of different mutations in myelin P0 protein. Ann. N. Y. Acad. Sci. 883:160-167.

    Google Scholar 

  30. Zhang, K. and Filbin, M. T. 1994. Formation of a disulfide bond in the immunoglobulin domain of the myelin P0 protein is essential for its adhesion. J. Neurochem. 63:367-370.

    Google Scholar 

  31. Zhang, K. and Filbin, M. T. 1998. Myelin P0 protein mutated at cys21 has a dominant-negative effect on adhesion of wild type P0. J. Neurosci. Res. 53:1-6.

    Google Scholar 

  32. Ding, Y. and Brunden, K. R. 1994. The cytoplasmic domain of myelin glycoprotein P0 interacts with negatively charged phospholipid bilayers. J. Biol. Chem. 269:10764-10770.

    Google Scholar 

  33. Wong, M.-H. and Filbin, M. T. 1994. The cytoplasmic domain of the myelin P0 protein influences the adhesive interactions of its extracellular domain. J. Cell Biol. 126:1089-1097.

    Google Scholar 

  34. Wong, M.-H. and Filbin, M. T. 1996. Dominant-negative effect on adhesion by myelin P0 protein truncated in its cytoplasmic domain. J. Cell Biol. 134:1531-1541.

    Google Scholar 

  35. Lanwert, C. and Jeserich, G. 2001. Structure, heterologous expression, and adhesive properties of the P0-like myelin glycoprotein IP1 of trout CNS. Microsc. Res. Technol. 52:637-644.

    Google Scholar 

  36. Xu, W., Shy, M., Kamholz, J., Elferink, L., Xu, G., Lilien, J., and Balsamo, J. 2001. Mutations in the cytoplasmic domain of P0 reveal a role for PKC-mediated phosphorylation in adhesion and myelination. J. Cell Biol. 155:439-446.

    Google Scholar 

  37. Bizzozero, O. A., Fridal, K., and Pastuszyn, A. 1994. Identification of the palmitoylation site in rat myelin P0 glycoprotein. J. Neurochem. 62:1163-1171.

    Google Scholar 

  38. Gao, Y., Li, W., and Filbin, M. T. 2000. Acylation of myelin P0 protein is required for adhesion. J. Neurosci. Res. 60:704-713.

    Google Scholar 

  39. Eichberg, J. and Iyer, S. 1996. Phosphorylation of myelin proteins: recent advances. Neurochem. Res. 21:257-535.

    Google Scholar 

  40. Brunden, K. R. and Poduslo, J. F. 1987. A phorbol estersensitive kinase catalyzes the phosphorylation of P0 glycoprotein in myelin. J. Neurochem. 49:1863-1872.

    Google Scholar 

  41. Agrawal, H. C. and Agrawal, D. 1989. Tumor promoters accentuate phosphorylation of P0: evidence for the presence of protein kinase C in purified PNS myelin. Neurochem. Res. 14:409-413.

    Google Scholar 

  42. Rowe-Rendleman, C. R. and Eichberg, J. 1994. P0 phosphorylation in nerves from normal and diabetic rats: role of protein kinase C and turnover of phosphate groups. Neurochem. Res. 19:1023-1031.

    Google Scholar 

  43. Suzuki, M., Sakamoto, Y., Kitamura, K., Fukunuga, K., Yamamoto, H., Miyamoto, E., and Uyemura, K. 1990. Phosphorylation of P0 glycoprotein in peripheral nerve myelin. J. Neurochem. 55:1966-1971.

    Google Scholar 

  44. Borghini, I., Ania-Laherta, A., Regazzi, R., Ferrari, G., Gjinovci, A., Wollheim, C. B., and Pralong, W. F. 1994. Alpha, beta I, beta II, delta and epsilon protein kinase C isoforms and compound activity in the sciatic nerve of normal and diabetic rats. J. Neurochem. 62:686-696.

    Google Scholar 

  45. Iyer, S., Rowe-Rendleman, C. L., Bianchi, R., and Eichberg, J. 1996. Tyrosine phosphorylation of myelin protein P0. J. Neurosci. Res. 46:531-539.

    Google Scholar 

  46. Iyer, S., Bianchi, R., and Eichberg, J. 2000. Tyrosine phosphorylation of PNS myelin P0 occurs in the cytoplasmic domain and is maximal during early development. J. Neurochem. 75:347-354.

    Google Scholar 

  47. Xu, W., Zhao, R., Sui, X., Xu, F., and Zhao, Z. J. 2000. Tyrosine phosphorylation of myelin P0 and its implication in signal transduction. Biochem. Biophys. Res. Commun. 267:820-825.

    Google Scholar 

  48. Warner, L. E., Hilz, M. J., Appel, S. H., Killian, J. M., Kolodny, E. H., Karpati, G., Carpenter, S., Walters, G. V., Wheeler, C., Witt, D., Bodell, A., Selis, E., Van Broeckhoven, C., and Lupski, J. R. 1996. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas and congenital hypomyelination. Neuron 17:451-460.

    Google Scholar 

  49. Warner, L. E., Garcia, C. A., and Lupski, J. R. 1999. Hereditary peripheral neuropathies: clinical forms, genetics and molecular mechanisms. Annu. Rev. Med. 50:263-275.

    Google Scholar 

  50. Previtali, S. C., Quattrini, A., Fasolini, M., Panzeri, M. C., Villa, A., Filbin, M. T., Li, W., Chiu, S.-Y., Messing, A., Wrabetz, L., and Feltri, M. L. 2000. Epitope-tagged P0 glycoprotein causes Charcot-Marie-Tooth-like neuropathy in transgenic mice. J. Cell Biol. 151:1035-1045.

    Google Scholar 

  51. Senderek, J., Hermanns, B., Lehmann, U., Bergmann, C., Marx, G., Kabus, C., Timmerman, V., Stottenberg-Didinger, G., and Schroder, J. M. 2000. Charot-Marie-Tooth neuropathy type 2 and P0 point mutations: two novel amino acids substitutions (asp61gly; try119cys) and a possible “hotspot” on thr124met. Brain Pathol. 10:235-248.

    Google Scholar 

  52. Berger, P., Young, P., and Suter, U. 2002. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics 4:1-15.

    Google Scholar 

  53. Bolino, A., Muglia, M., Conforti, F. L., LeGuern, E., Salih, M. A., Georgiou, D. M., Christodoulou, K., Hausmanowa-Petrusewixz, I., Mandich, P., Schenone, A., Gambardella, A., Bono, F., Quattrone, A., DeVoto, M., and Monaco, A. P. 2000. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25:17-19.

    Google Scholar 

  54. Houldin, H., King, R. H., Wood, N. W., Thomas, P. K., and Reilly, M. M. 2001. Mutations in the 5' region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain 124:907-915.

    Google Scholar 

  55. Berger, P., Bonneick, S., Willi, S., Wymann, M., and Suter, U. 2002. Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mutat. 15:1569-1579.

    Google Scholar 

  56. Bolino, A., Marigo, V., Ferrera, F., Loader, J., Romio, L., Leoni, A., Di Duca, M., Cinti, R., Cecchi, C., Feltri, M. L., Wrabetz, L., Ravazzolo, R., and Monaco, A. P. 2002. Molecular characterization and expression analysis of Mtmr2, a mouse homologue of MTMR2, the Myotubularin-related 2 gene, mutated in CMT4B. Gene 283:17-26.

    Google Scholar 

  57. Nakagawa, M., Suchara, M., Saito, A., Takashima, H., Umchara, F., Saito, M., Kanzato, N., Matsuzaki, T., Takenaga, S., Sakoda, S., Izumo, S., and Osame, M. 1999. A novel MPZ gene mutation in dominantly inherited neuropathy with focally folded myelin sheaths. Neurology 52:1271-1275.

    Google Scholar 

  58. Fabrizi, G. M., Taioli, F., Cavallaro, T., Rigatelli, F., Simonati, A., Mariani, G., Perrone, P., and Rizzuto, N. 2000. Focally folded melin in Charcot-Marie-Tooth neuropathy type 1B with ser49leu in the myelin protein zero. Acta Neuropathol. (Berl.) 100:299-304.

    Google Scholar 

  59. Brunden, K. R. 1992. Age-dependent changes in the oligosaccharide structure of the major myelin glycoprotein, PO. J. Neurochem. 58:1659-1666.

    Google Scholar 

  60. Trapp, B. D., Kidd, G. J., Hauer, P., Mulrenin, E., Haney, C. A., and Andrews, S. B. 1995. Polarization of myelinating Schwann cell surface membranes: Role of microtubules and the trans-Golgi network. J. Neurosci. 15:1797-1807.

    Google Scholar 

  61. Pfend, G., Matthieu, J.-M., Garin, N., and Tosic, M. 2001. Implication of the extracellular disulfide bond on myelin protein zero expression. Neurochem. Res. 26:503-510.

    Google Scholar 

  62. Boll, W., Ohno, H., Songyang, Z., Rapport, I., and Cantley, L. C. 1996. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J. 15:5789-6795.

    Google Scholar 

  63. Owens, D. J. and Evans, P. R. 1998. A structural explanation for the recognition of tyrosine-based endocytic signals. Science 282:1327-1332.

    Google Scholar 

  64. Yin, X., Kidd, G. J., Wrabetz, L., Feltri, M. L., Messing, A., and Trapp, B. D. 2000. Schwann cell myelination requires timely and precise targeting of P(0) protein. J. Cell Biol. 148: 1009-1020.

    Google Scholar 

  65. Wrabetz, L., Feltri, M. L., Quattrini, A., Imperiale, D., Previtali, S., Antonio, M., Martini, R., Yin, X., Trapp, B. D., Zhou, L., Chiu, S. Y., and Messing, A. 2000. P(0) glycoprotein over-expression causes congenital hypomyelination of peripheral nerves. J. Cell Biol. 148:1021-1034.

    Google Scholar 

  66. Notterpek, L., Snipes, G. J., and Shooter, E. M. 1999. Temporal expression pattern of peripheral myelin protein in 22 during in vivo and in vitro myelination. Glia 25:358-369.

    Google Scholar 

  67. Kamholz, J., Awatramanai, R., Menichella, D., Jiang, H., Xu, W., and Shy, M. 1999. Regulation of myelin-specific gene expression: relevance to CMT1. Ann. N.Y. Acad. Sci. 883:91-108.

    Google Scholar 

  68. Giese, K. P., Martin, R., Lemke, G., Soriano, P., and Schachner, M. 1992. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565-576.

    Google Scholar 

  69. Martini, R., Mohajeri, M. H., Kasper, S., Giese, K. P., and Schachner M. 1995. Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. J. Neurosci. 15:4488-4495.

    Google Scholar 

  70. Martini, R. and Schachner, M. 1997. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 19:298-310.

    Google Scholar 

  71. Martini, R., Zielasek, J., Toyka, K. V., Giese, K. P., and Schachner, M. 1995. Protein zero (P0)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat. Genet. 11:281-286.

    Google Scholar 

  72. Xu, W., Manichella, D., Jiang, H., Vallat, J.-M., Lilien, J., Baron, P., Scarlato, G., Kamholz, J., and Shy, M. E. 2000. Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J. Neurosci. Res. 60:714-724.

    Google Scholar 

  73. Fannon, A. M., Sherman, D. L., Ilyina-Gragerova, G., Brophy, P. J., Friedrich, V. L., Jr., and Colman, D. R. 1995. Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J. Cell Biol. 129:189-202.

    Google Scholar 

  74. Menichella, D. M., Arroyo, E. J., Awatramani, R., Xu, T., Baron, P., Vallat, J. M., Balsamo, J., Lilien J., Scarlato, G., Kamholz, J., Schere, S. S., and Shy, M. 2001. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol. Cell. Neurosci. 18:606-618.

    Google Scholar 

  75. Lee, M. J., Brennan, A., Blanchard, A., Zoidl, G., and Dong, Z. 1997. P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol. Cell. Neurosci. 8:336-350.

    Google Scholar 

  76. Brown, A. M. and Lemke, G. 1997. Multiple regulatory elements control transcription of the peripheral myein protein zero gene. J. Biol. Chem. 272:28939-28947.

    Google Scholar 

  77. Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, J., and Wegner, M. 1998. Cooperative function of POU proteins and SOX proteins in glial cells. J. Biol. Chem. 273:16050-16057.

    Google Scholar 

  78. Peirano, R. I., Goerich, D. E., Riethmacher, D., and Wegner, M. 2000. Protein zero gene expression is regulated by the glial transcription factor Sox 10. Mol. Cell. Biol. 20:3198-3209.

    Google Scholar 

  79. Peirano, R. I. and Wegner, M. 2000. The glial transcription factor Sox10 binds to DNA both as monomer and dimmer with different functional consequences. Nucleic Acids Res. 28:3047-3055.

    Google Scholar 

  80. Morgan, L., Kristjan, R., Jessen, K. R., and Mirsky, R. 1994. Negative regulation of the P0 gene in Schwann cells: suppression of P0 mRNA and protein induction in cultured Schwann cells by FGF2 and TGFb1, TGFb2 and TGFb3. Development 120:1399-1409.

    Google Scholar 

  81. Stewart, H. J., Bradke, F., Tabernero, A., Morrell, D., Jessen, K. R., and Mirsky, R. 1996. Regulation of rat Schwann cell Po expression and DNA synthesis by insulin-like growth factors in vivo. Eur. J. Neurosci. 8:553-564.

    Google Scholar 

  82. Russell, J. W., Cheng, H. L., and Golovou, D. 2000. Insulin-like growth factor-I promotes myelination of peripheral sensory axons. J. Neuropathol. Exp. Neurol. 59:575-584.

    Google Scholar 

  83. Einheber, S., Hannocks, M. J., Metz, C. N., Rifkin, D. B., and Salzer, J. L. 1995. Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J. Cell Biol. 129:443-458.

    Google Scholar 

  84. Guenard, V., Gwynn, L. A., and Wood, P. M. 1995. Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J. Neurosci. 15:419-428.

    Google Scholar 

  85. Koenig, H., Schumacher, M., Ferzaz, B., Do Thi, A. N., Ressouches, A., Guennoun, R., Jung-Testas, I., Robel, P. Akwa, Y., and Baulieu, E. E. 1995. Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500-1503.

    Google Scholar 

  86. Schumacher, M., Guennoun, R., Mercier, G., Desarnaud, F., Lacor, P., Benavides, J., Ferzaz, B., Robert, F., and Baulieu, E. E. 2001. Progesterone synthesis and myelin formation in peripheral nerves. Brain Res. Rev. 37:343-359.

    Google Scholar 

  87. Magnaghi, V., Cavaretta, I., Galbiati, M., Martini, L., and Melcangi, R. C. 2001. Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37:360-371.

    Google Scholar 

  88. Desarnaud, F., Do Thi, A. N., Brown, A. M., Lemke, G., Suter, U., Baulieu, E. E., and Schumacher, M. 1998. Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J. Neurochem. 71:1765-1768.

    Google Scholar 

  89. Melcangi, R. C., Magnaghi, V., Cavaretta, I., Zucchi, I., Bovolin, P., D Urso, D., and Martini, L. 1999. Progesterone derivatives are able to influence peripheral myelin protein 22 and P0 gene expression: possible mechanisms of action. J. Neurosci. Res. 56:349-357.

    Google Scholar 

  90. Melcangi, R. C., Magnaghi, V., Cavarretta, I., Martini, L., and Piva, F. 1998. Age-induced decrease of glycoprotein P0 and myelin basic protein gene expression in the rat sciatic nerve. repair by steroid derivative. Neuroscience 85:569-578.

    Google Scholar 

  91. Robert, F., Guennown, R., Desarnaud, F., Do-Thi, A., Benmessahel, Y., Baulieu, E. E., and Schumacher, M. 2001. Synthesis of progesterone in Schwann cells: regulation by sensory neurons. Eur. J. Neurosci. 13:916-924.

    Google Scholar 

  92. Magnaghi, V., Cavarretta, I., Zucchi, I., Susani, L., Rupprecht, R., Hermann, B., Martini, L., and Melcangi, R. C. 1999. P0 gene expression is modulated by androgens in the sciatic nerve of adult male rats. Mol. Brain Res. 70:36-44.

    Google Scholar 

  93. Desarnaud, F., Bidichandani, S., Patel, P. I., Baulieu, E. E., and Schumacher, M. 2000. Glucocorticosteroids stimulate the activity of the promoters of peripheral myelin protein-22 genes in Schwann cells. Brain Res. 865:12-16.

    Google Scholar 

  94. Donaghy, M., Sisodiya, S. M., Kennett, R., McDonald, B., Haites, N., and Bell, C. 2000. Steroid responsive polyneuropathy in a family with a novel myelin protein zero mutation. J. Neurol. Neurosurg. Psychiatry 69:799-805.

    Google Scholar 

  95. Zhang, S.-M., Marsh, R., Rainer, N., and Brackenbury, R. 1995. Myelin glycoprotein P0 is expressed at early stages of chicken and rat embryogensis. J. Neurosci. Res. 40:241-250.

    Google Scholar 

  96. Lee, M. J., Calle, E., Brennan, A., Ahmed, S., Sviderskaya, E., Jessen, K. R., and Mirsky, R. 2001. In early development of the rat mRNA for the major myelin protein P(0) is expressed in nonsensory areas of the embryonic inner ear, notochord, enteric nervous system, and olfactory ensheathing cells. Dev. Dyn. 222:40-51.

    Google Scholar 

  97. Hagedorn, L., Suter, U., and Sommer, L. 1999. P0 and PMP22 mark a multipotent neural crest cell type that displays community effects in response to TGF-β family factors. Development 126:3781-3794.

    Google Scholar 

  98. Gallego, R. G., Jimenez-Blanco, J. L., Thijssen-van Zuylen, C. W. E. M., Gotfredsen, C. H., Voshol, H., Duus, J. O., Schachner, M., and Vliegenthart, J. F. G. 2001. Epitope diversity of N-glycans from bovine peripheral myelin glycoprotein P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy. J. Biol. Chem. 276:30834-30844.

    Google Scholar 

  99. Sommer, L. and Suter, U. 1998. The glycoprotein P0 in peripheral gliogenesis. Cell Tissue Res. 292:11-16.

    Google Scholar 

  100. Yazaki, T., Miura, M., Asou, H., Toya, S., and Uyemura, K., 1991. Myelin P0 protein expressed in C6 cells promote neurite outgrowth. Biomed. Res. 12:223-230.

    Google Scholar 

  101. Yazaki, T., Miura, M., Asou, H., Toya, S., and Uyemura, K. 1994. Peripheral myelin P0 protein mediates neurite outgrowth of cortical neurons in vitro and axonal regeneration in vivo. Nuerosci. Lett. 17:13-16.

    Google Scholar 

  102. Samsam, M., Frei, R., Marziniak, M., Martini, R., and Sommer, C. 2002. Impaired sensory function in heterozygous P0 knockout mice is associated with nodal changes in sensory nerves. J. Neurosci. Res. 67:167-173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichberg, J. Myelin P0: New Knowledge and New Roles. Neurochem Res 27, 1331–1340 (2002). https://doi.org/10.1023/A:1021619631869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021619631869

Navigation