Skip to main content
Log in

Inhibition of Creatine Kinase Activity in Vitro by Ethylmalonic Acid in Cerebral Cortex of Young Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Short-chain acyl-CoA dehydrogenase deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of ethylmalonic (EMA) and methylsuccinic (MSA) acids and clinically by severe neurological symptoms. In the present study we investigated the in vitro effects of EMA and MSA on the activity of creatine kinase (CK) in homogenates from cerebral cortex, skeletal and cardiac muscle of rats. EMA significantly inhibited CK activity from cerebral cortex, but did not affect this activity in skeletal and cardiac muscle. Furthermore, MSA had no effect on this enzyme in all tested tissues. Glutathione (GSH), ascorbic acid and α-tocopherol, and the nitric oxide synthase inhibitor L-NAME, did not affect the enzyme activity per se, but GSH fully prevented the inhibitory effect of EMA when co-incubated with EMA. In contrast, α-tocopherol, ascorbic acid and L-NAME did not influence the inhibitory effect of the acid. The data suggest that inhibition of brain CK activity by EMA is possibly mediated by oxidation of essential groups of the enzyme, which are protected by the potent intracellular, endogenous, naturally occurring antioxidant GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rinaldo, P., Raymond, K., Al-Odaib, A., and Bennett, M. 1998. Clinical and biochemical features of fatty acid oxidation disorders. Curr. Opin. Ped. 10:615–621.

    Google Scholar 

  2. Sweetman, L. and Williams, J. C. 2001. Branched chain organic acidurias. Pages 2115–2163, in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The metabolic and molecular bases of inherited disease, 8th ed. McGraw-Hill, New York.

    Google Scholar 

  3. Roe, C. R. and Ding, J. 2001. Mitochondrial fatty acid oxidation disorders. Pages 2297–2326, in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The metabolic and molecular bases of inherited disease, 8th ed. McGraw-Hill, New York.

    Google Scholar 

  4. Bhala, A., Willi, S. M., Rinaldo, P., Bennett, M. J., Schmid-Sommerfeld, E., and Hale, D. E. 1995. J. Pediatr. 126:910–915.

    Google Scholar 

  5. Corydon, M. J., Gregersen, N., Lehnert, W., Ribes, A., Rinaldo, P., Kmoch, S., Christensen, E., Kristensen, T. J., Andresen, B. S., Bross, P., Winter, V., Martinez, G., Neve, S., Jensen, T. G., Bolund, L., and Kolvraa, S. 1996. Ethylmalonic aciduria is associated with an amino acid variant of short chain acylcoenzyme A dehydrogenase. Pediatr. Res. 39:1059–1066.

    Google Scholar 

  6. Sewell, A. C., Herwig, J., Böhles, H., Rinaldo, P., Bhala, A., and Hale, D. E. 1993. A new case of short-chain acyl-CoA dehydrogenase deficiency with isolated ethylmalonic aciduria. Eur. J. Pediatr. 152:922–924.

    Google Scholar 

  7. Tein, I., Haslam, R. H. A., Rhead, W. J., Bennett, M. J., Becker, L. E., and Vockley, J. 1999. Short-chain acyl-CoA dehydrogenase deficiency: A cause of ophthalmoplegia and multicore myopathy. Neurology. 52(2):366–372.

    Google Scholar 

  8. Dawson, D. B., Waber, L., Hale, D. E., and Bennett, M. J. 1995. Transient organic aciduria and persistent lacticacidemia in a patient with short-chain acyl-coenzyme A dehydrogenase deficiency. J. Pediatr. 126:69–71.

    Google Scholar 

  9. Bennet, M. J., Weinberger, M. J., Kobory, J. A., Rinaldo, P., and Burlina, A. B. 1996. Mitochondrial short-chain L-3–hydroxyacyl-coenzyme A dehydrogenase deficiency: A new defect of fatty acid oxidation. Pediatr. Res. 39(1):185–188.

    Google Scholar 

  10. Ozand, P. T., Rashed, M., Millington, D. S., Sakati, N., Hazzaa, S., Rahbeeni, Z., al Odaib, A., Youssef, N., Mazrou, A., and Gascon, G. G. 1994. Ethylmalonic aciduria: An organic acidemia with CNS involvement and vasculopathy. Brain Dev. 16:12–22.

    Google Scholar 

  11. Burlina, A. B., Dionisi-Vici, C., Bennett, M. J., Gibson, K. M., Servidei, S., Bertini, E., Hale, D. E., Schmidt-Sommerfeld, E., Sabetta, G., Zacchello, F., and Rinaldo, P. 1994. A new syndrome with ethylmalonic aciduria and normal fatty acid oxidation in fibroblasts. J. Pediatr. 124(1):79–86.

    Google Scholar 

  12. Garcia-Silva, M. T., Campos, Y., Ribes, A. Briones, P., Cabello, A, Santos Borbujo, J., Arenas, J., and Garavaglia, B. 1994. Encephalopathy, petechiae, and acrocyanosis with ethylmalonic aciduria associated with muscle cytochrome C oxidase deficiency. (Letter) J. Pediatr. 125:843.

    Google Scholar 

  13. Garcia-Silva M. T., Ribes A., Campos Y., Garavaglia B., and Arenas J. 1997. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr. Neurol. 17(2):165–170.

    Google Scholar 

  14. Bessman, S. P. and Carpenter, C. L. 1985. The creatine-creatine phosphate energy shuttle. Ann. Rev. Biochem. 54:831–862.

    Google Scholar 

  15. Schnyder, T., Gross, H., Winkler, H., Eppenberger, H. M., and Wallimann, T. 1991. Structure of the mitochondrial creatine kinase octamer: High-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J. Cell Biol. 112(1):95–101.

    Google Scholar 

  16. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The “phosphocreatine circuit” for cellular energy homeostasis. Biochem. J. 281:21–40.

    Google Scholar 

  17. Hamman, B. L., Bittl, J. A., Jacobus, W. E., Allen, P. D., Spencer, R. S., Tian, R., and Ingwall, J. S. 1995. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am. J. Physiol. 269:H1030–H1036.

    Google Scholar 

  18. Gross, W. L., Bak, M. I., Ingwall, J. S., Arstall, M. A., Smith, T. W., Balligand, J. L., and Kelly, R. 1996. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc. Natl. Acad. Sci. USA 93:5604–5609.

    Google Scholar 

  19. Stadhouders, A. M., Jap, P., Winkler, H. P., Eppenberger, H. M., and Wallimann, T. 1994. Mitochondrial creatine kinase: A major constituent of pathological inclusions seen in mitochondrial myopathies. Proc. Natl. Acad. Sci. USA 91:5089–5094.

    Google Scholar 

  20. Hughes, B. P. 1962. A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin. Chim. Acta 7:597–604.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–267.

    Google Scholar 

  22. O'Gorman, E., Beutner, G., Wallimann, T., and Brdiczka, D. 1996. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle. Biochim. Biophys. Acta 1276:161–170.

    Google Scholar 

  23. Wyss, M., Smeitink, J., Wevers, R. A., and Wallimann, T. 1992. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim. Biophys. Acta 1102(2):119–166.

    Google Scholar 

  24. Holzman, D., Meyers, R., Khait, I., and Jensen, F. 1997. Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats. Epilepsy Res. 27:7–11.

    Google Scholar 

  25. Eppenberger, H. M., Dawson, D. M., and Kaplan, N. D. 1967. The comparative enzymology of creatine kinase. I. Isolation and characterization from chicken and rabbit tissues. J. Biol. Chem. 242:204–209.

    Google Scholar 

  26. Wolosker, H, Panizzutti, R., and Englender, S. 1996. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett. 392(3):274–276.

    Google Scholar 

  27. Mekhfi, H., Veksler, V., Mateo, P., Maupoil, V., Rochette, L., and Ventura-Clapier, R. 1996. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ. Res. 78:1016–1027.

    Google Scholar 

  28. Stachowiak, O., Dolder, M., Wallimann, T., and Richter, C. 1998. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 273:16694–16699.

    Google Scholar 

  29. Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: Roles, tools, and controls. Cell 78(6):915–918.

    Google Scholar 

  30. Yuan, G., Kaneko, M., Masuda, H., Hon, R. B., Kobayashi, A., and Yamazaki, N. 1992. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals. Biochim. Biophys. Acta 1140:78–84.

    Google Scholar 

  31. Meister, A. and Anderson, M. E. 1983. Glutathione. Annu. Rev. Biochem. 52:711–760.

    Google Scholar 

  32. Burton, G. W., Wronska, U., Stone, L., Foster, D. O., and Ingold, K. U. 1990. Biokinetics of dietary RRR-αtocopherol in the male guinea-pig at three dietary levels of vitamin C and two levels of vitamin E. Lipids 25:199–210.

    Google Scholar 

  33. Haliwell, B. 1996. Free radicals, protein and DNA: Oxidative damage versus redox regulation. Biochem. Soc. Trans. 24:1023–1027.

    Google Scholar 

  34. Reichmann, H., Maltese, W. A., and DeVivo, D. C. 1988. Enzyme of fatty acid β-oxidation in developing brain. J Neurochem. 51(2):339–344.

    Google Scholar 

  35. Oldendorf, W. H. 1973. Carrier-mediated blood-brain barrier transport of short chain monocarboxylic organic acids. Am. J. Physiol. 224:1450–1453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuck, P.F., Leipnitz, G., Ribeiro, C.A.J. et al. Inhibition of Creatine Kinase Activity in Vitro by Ethylmalonic Acid in Cerebral Cortex of Young Rats. Neurochem Res 27, 1633–1639 (2002). https://doi.org/10.1023/A:1021682910373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021682910373

Navigation