Skip to main content
Log in

Myelin Basic Protein Is a Zinc-Binding Protein in Brain: Possible Role in Myelin Compaction

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Moscarello, M. A. 1990. Myelin Basic Protein: a dynamically changing structure, Pages 25–48, in Hashim, G. A., and Moscarella, M. A. (eds.), Dynamic Interaction of Myelin Protein, Alan R. Liss Inc., New York.

    Google Scholar 

  2. Poduslo, J. F., and Braun, P. E. 1975. Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorporation of iodine into myelin surface protein. J. Biol. Chem. 250:1099–1105.

    Google Scholar 

  3. Ter Beest, M. B. A., and Hoekstra, D. 1993. Interaction of myelin basic protein with artificial membranes. Parameters governing binding, aggregation and dissociation. Eur. J. Biochem. 211:689–696.

    Google Scholar 

  4. Young, P. R., Vacante, D. A., and Snyder, W. R. 1982. Protein-induced aggregation of lipid vesicles. Mechanism of the myelin basic protein-myelin interaction. J. Am. Chem. Soc. 104:7287–7291.

    Google Scholar 

  5. Smith, R. 1977. Non-covalent cross-linking of lipid bilayers by myelin basic protein. A possible role in myelin formation. Biochim. Biophys. Acta 470:170–184.

    Google Scholar 

  6. Berlet, H. H., Bischoff, H., and Weinhardt, F. 1994. Divalent metals of myelin and their differential binding by myelin basic protein of bovine central nervous system. Neurosci. Lett. 179(1–2):75–78.

    Google Scholar 

  7. Earl, C., Chantry, A., Mohammad, N., and Glynn, P. 1988. Zinc ions stabilize the association of basic protein with brain myelin membranes. J. Neurochem. 51:718–724.

    Google Scholar 

  8. Frederickson, C. J. 1989. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31:145–238.

    Google Scholar 

  9. Donaldson, J., St-Pierre, T., Minnich, J. L., and Barbeau, A. 1973. Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can. J. Biochem. 51:87–92.

    Google Scholar 

  10. Mazen, A., Gradwohl, G., and Murcia, de G. 1988. Zinc-binding proteins detected by protein blotting. Anal. Biochem. 172:39–42.

    Google Scholar 

  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 277: 680–688.

    Google Scholar 

  12. Fairbank, G., Steck, T. L., and Wallach, D. F. H. 1971. Coomassie blue R 250 used in isopropanol-acetic acid. Biochemistry 10(13): 2602–2618.

    Google Scholar 

  13. Towin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Aci. USA 76:4350–4354.

    Google Scholar 

  14. Schagger, H., and von Jagow, G. 1987. Tricine-Sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–379.

    Google Scholar 

  15. Norton, W. T., and Poduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–757.

    Google Scholar 

  16. Gonazales-Sastre, F. 1970. The protein composition of isolated myelin. J. Neurochem. 17:1049–1056.

    Google Scholar 

  17. Wood, D. D., and Moscarello, M. A. 1989. The isolation, characterization and lipid-aggregation properties of a citrulline-containing myelin basic protein. J. Biol. Chem. 264:5121–5127.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. J., and Randall, R. J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Hames, B. D. 1989. One-dimensional polyacrylamide gel electrophoresis. Pages 1–147, in B. D. Hames, and D. Rickwood (eds), Gel electrophoresis of proteins: A practical approach, 2nd ed. IRL, Oxford.

    Google Scholar 

  20. Williams, R. J. P. 1989. An introduction to the biochemistry of zinc. Pages 15–32, in Mills C. F. (ed), Zinc in human biology. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  21. Williams, R. J. P. 1984. Zinc: what is its role in biology? Sci. Am. 258(2):65–70.

    Google Scholar 

  22. Eylar, E. H., Myelin-specific proteins. 1974. Pages 27–44, in Schreider, D. J., R. H. Angeletti, R. A. Bradshaw, A. Grasso, and B. W. Moore (eds), Proteins of the nervous system. Raven Press, New York.

    Google Scholar 

  23. Smith, R., and Braun, P. E. 1988. Release of proteins from the surface of bovine central nervous system myelin by salts and phospholipase. J. Neurochem. 50:722–729.

    Google Scholar 

  24. Riccio, P., Giovannelli, S., Bobba, A., Romito, E., Fasano, A., Bleve-Zacheo, T., Favilla, R., Quagliariello, E., and Cavatorta, P. 1995. Specificity of zinc binding to myelin basic protein. Neurochem. Res. 20(9):1107–1113.

    Google Scholar 

  25. Martenson, R. E. 1992. Myelin basic protein isoforms: Structural and evolutionary implications of alternative exon splicing. Pages 387–411, in Martenson, R. E. (ed.), Myelin: Biology and chemistry, CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  26. Boulias, C., Pang, H., Mastronardi, F., and Moscarello, M. A. 1995. The isolation and characterization of four myelin basic proteins from the unbound fraction during CM52 chromatography. Arch. Biochem. Biophys. 322:174–182.

    Google Scholar 

  27. Berg, J. M. 1986. Potential metal binding domains in nucleic acid binding proteins. Science 232:485–482.

    Google Scholar 

  28. Smeyers-Verbeke, J., Defrise-Gussenhaoven, E., Ebinger, G., Lowenthal, A., and Massart, D. L. 1974. Distribution of Cu and Zn in human brain tissue. Clin. Chim. Acta. 51:309–314.

    Google Scholar 

  29. Gerstl, B., Eng, L. F., Hayman, R. B., Tavastajerna, M. G., and Bond, P. R. 1967. On the composition of human myelin. J. Neurochem. 14:661–670.

    Google Scholar 

  30. Kirshner, D. A., and Ganser, A. L. 1980. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–210.

    Google Scholar 

  31. Readhead, C., Popko, B., Takahashi, N., Shine, H. D., Saavegra, R. A., Sidman, R. L., and Hood L. 1987. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48:703–712.

    Google Scholar 

  32. Dreosti, I. E., Manuel, S. L., Buckley, R. A., Fraser, F. J., and Record, I. R. 1981. The effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebellum and hippocampus in rats. Life Sci. 28: 2133–2141.

    Google Scholar 

  33. Liu, H., Oteiza, P. I., Gershwin, M. E., Golub, M. S., and Keen, C. L. 1992. Effects of maternal marginal zinc deficiency on myelin protein profiles in the suckling rat and infant rhesus monkey. Biol. Trace. Elem. Res. 34(1):55–66.

    Google Scholar 

  34. Cavatorta, P., Giovanelli, S., Bobba, A., Riccio, P., Szabo, A. G., and Quagliariello, E. 1994. Myelin basic protein interaction with zinc and phosphate: Fluorescence studies on the water-soluble form of the protein. Biophys. J. 66:1174–1179.

    Google Scholar 

  35. Lampe, P. D., Wei, G. J., and Nelsestuen, G. L. 1983. Stopped-flow studies of myelin basic protein association with phospholipid vesicles and subsequent vesicle aggregation. Biochemistry 22: 1594–1599.

    Google Scholar 

  36. Golds, E. E., and Braun, P. E. 1978. Protein association and basic protein conformation in the myelin membrane. J. Biol. Chem. 253: 8162–8170.

    Google Scholar 

  37. Golds, E. E., and Braun P. E. 1978. Crosslinking studies on the conformation and dimerization of myelin basic protein in solution. J. Biol. Chem. 253:8171–8177.

    Google Scholar 

  38. Bettger, W. L., Fish, T. J., and O'DellA, B. J. 1981. Critical physiological role of zinc in the structure and function of bio-membranes. Life Sci. 28:1425–1438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, D., Tsang, Y.S., Ho, W.K.K. et al. Myelin Basic Protein Is a Zinc-Binding Protein in Brain: Possible Role in Myelin Compaction. Neurochem Res 22, 811–819 (1997). https://doi.org/10.1023/A:1022031825923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022031825923

Navigation