Skip to main content
Log in

Reversibility of Cisternal Stack Formation During Hypoxic Hypoxia and Subsequent Reoxygenation in Cerebellar Purkinje Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cisternal stacks are induced during hypoxia, which may be associated with intracellular Ca2+ regulation. Although neurons are divided internally in different compartments, little is known about regional differences in cisternal stack formation. We investigated the effects of hypoxic hypoxia and later reoxygenation on cisternal stack formation and other ultrastructual changes in the proximal dendrite, dendritic spine, and cell body of cerebellar Purkinje cells in rats. After brief hypoxic events, cisternal stacks appeared predominantly in the proximal dendrites and after longer hypoxic events in dendritic spines and cell body. Following reoxygenation, cisternal stacks disappeared first in the cell body, followed by the dendritic spines, then the proximal dendrites. These results showed that stack formation occurred at different degrees and time courses among the three regions, and the effect was reversible, which suggests that these compartments are differentially sensitive to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Herndon, R. M. 1964. Lamellar bodies, an unusual arrangement of the granular endoplasmic reticulum. J. Cell Biol. 20:338-342.

    PubMed  Google Scholar 

  2. Bestetti, G. and Rossi, G. L. 1980. The occurrence of cytoplasmic lamellar bodies in normal and pathologic conditions. Acta Neuropathol. (Berl.) 49:75-78.

    Google Scholar 

  3. Hansson, H. A. 1981. Lamellar bodies in Purkinje nerve cells experimentally induced by electric field. Brain Res. 216:187-191.

    PubMed  Google Scholar 

  4. Palladini, G., Conforti, A., and Medolago-Albani, L. 1976. Ultrastructural hypoxic changes in Ammon's horn and Purkinje cells. Brain Res. 103:45-56.

    PubMed  Google Scholar 

  5. Takei, K., Mignery, G. A., Mugnaini, E., Sudhof, T. C., and De Camilli, P. 1994. Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron 12:327-342.

    PubMed  Google Scholar 

  6. Banno, T. and Kohno, K. 1996. Conformational changes of smooth endoplasmic reticulum induced by brief anoxia in rat Purkinje cells. J. Comp. Neurol. 369:462-471.

    PubMed  Google Scholar 

  7. Rosenbluth, J. 1962. Subsurface cisterns and their relationship to the neuronal plasma membrane. J. Cell Biol. 13:405-421.

    PubMed  Google Scholar 

  8. Nathaniel, E. J. H. and Nathaniel, D. R. 1966. Fine structure of the neurons of the posterior horn in the rat spinal cord. Anat. Res. 155:629-641.

    Google Scholar 

  9. Karlsson, U. and Schultz, R. L. 1966. Fixation of the central nervous system for electron microscopy by aldehyde perfusion. 3. Structual changes after exsanguination and delayed perfusion. J. Ultrastruct. Res. 14:47-63.

    Google Scholar 

  10. Van Nimwegen, D. and Sheldon, H. 1966. Early postmortem changes in cerebellar neurons of the rat. J. Ultrastruct. Res. 14:36-46.

    Google Scholar 

  11. Rossi, F., Cantino, D., and Strata, P. 1987. Morphology of Purkinje cell axon terminals in intracerebellar nuclei following inferior olive lesion. Neuroscience 22:99-112.

    PubMed  Google Scholar 

  12. Choi, D. W. 1995. Calcium: Still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18:58-60.

    PubMed  Google Scholar 

  13. Miyakawa, H., Lev-Ram, V., Lasser-Ross, N., and Ross, W. N. 1992. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J. Neurophysiol. 68:1178-1189.

    PubMed  Google Scholar 

  14. Finch, E. A. and Augustine, G. J. 1998. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753-756.

    PubMed  Google Scholar 

  15. Takechi, H., Eilers, J., and Konnerth, A. 1998. A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757-760.

    PubMed  Google Scholar 

  16. Berridge, M. J. 1998. Neuronal calcium signaling. Neuron 21:13-26.

    PubMed  Google Scholar 

  17. Mignery, G. A., Sudhof, T. C., Takei, K., and De Camilli, P. 1989. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192-195.

    PubMed  Google Scholar 

  18. Otsu, H., Yamamoto, A., Maeda, N., Mikoshiba, K., and Tashiro, Y. 1990. Immunogold localization of inositol 1, 4, 5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct. Funct. 15:163-173.

    PubMed  Google Scholar 

  19. Satoh, T., Ross, C. A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S. H., and Meldolesi, J. 1990. The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111:615-624.

    PubMed  Google Scholar 

  20. Takei, K., Stukenbrok, H., Metcalf, A., Mignery, G. A., Sudhof, T. C., Volpe, P., and De Camilli, P. 1992. Ca2+ stores in Purkinje neurons: Endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin. J. Neurosci. 12:489-505.

    PubMed  Google Scholar 

  21. Mitani, A., Yanase, H., Namba, S., Shudo, M., and Kataoka, K. 1995. In vitro ischemia-induced intracellular Ca2+ elevation in cerebellar slices: A comparative study with the values found in hippocampal slices. Acta Neuropathol. 89:2-7.

    PubMed  Google Scholar 

  22. Banno, T. and Kohno, K. 1998. Conformational changes of the smooth endoplasmic reticulum are facilitated by L-glutamate and its receptors in rat Purkinje cells. J. Comp. Neurol. 402:252-263.

    PubMed  Google Scholar 

  23. Ito, M. and Kano, M. 1982. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33:253-258.

    PubMed  Google Scholar 

  24. Konnerth, A., Llano, I., and Armstrong, C. M. 1990. Synaptic currents in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA. 87:2662-2665.

    PubMed  Google Scholar 

  25. Perkel, D. J., Hestrin, S., Sah, P., and Nicoll, R. A. 1990. Excitatory synaptic currents in Purkinje cells. Proc. Royal Soc. Lond. B. Biol. Sci. 241:116-121.

    Google Scholar 

  26. Martin, L. J., Blackstone, C. D., Huganir, R. L., and Price, D. L. 1992. Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9:259-270.

    PubMed  Google Scholar 

  27. Baude, A., Nusser, Z., Roberts, J. D., Mulvihill, E., McIlhinney, R. A., and Somogyi, P. 1993. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771-787.

    PubMed  Google Scholar 

  28. Yuste, R. and Denk, W. 1995. Dendritic spines as basic functional units of neuronal integration. Nature 375:682-684.

    PubMed  Google Scholar 

  29. Miyata, M., Finch, E. A., Khiroug, L., Hashimoto, K., Hayasaka, S., Oda, S. I., Inouye, M., Takagishi, Y., Augustine, G. J. and Kano, M. 2000. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233-244.

    PubMed  Google Scholar 

  30. Harris, K. M. 1999. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9:343-348.

    PubMed  Google Scholar 

  31. Hu, B. R., Park, M., Martone, M. E., Fischer, W. H., Ellisman, M. H., and Zivin, J. A. 1998. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J. Neurosci. 18:625-633.

    PubMed  Google Scholar 

  32. Martone, M. E., Jones, Y. Z., Young, S. J., Ellisman, M. H., Zivin, J. A., and Hu, B. R. 1999. Modification of postsynaptic densities after transient cerebral ischemia: A quantitative and three-dimensional ultrastructural study. J. Neurosci. 19:1988-1997.

    PubMed  Google Scholar 

  33. Martone, M. E., Hu, B. R., and Ellisman, M. H. 2000. Alterations of hippocampal postsynaptic densities following transient ischemia. Hippocampus 10:610-616.

    PubMed  Google Scholar 

  34. Harris, K. M., Jensen, F. E., and Tsao, B. 1992. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12:2685-2705.

    PubMed  Google Scholar 

  35. Harris, K. M. and Kater, S. B. 1994. Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17:341-371.

    PubMed  Google Scholar 

  36. Kennedy, M. B. 1994. The biochemistry of synaptic regulation in the central nervous system. Annu. Rev. Biochem. 63:571-600.

    PubMed  Google Scholar 

  37. Suzuki, T. 1994. Protein kinases involved in the expression of long-term potentiation. Int. J. Biochem. 26:735-744.

    PubMed  Google Scholar 

  38. Klauck, T. M. and Scott, J. D. 1995. The postsynaptic density: A subcellular anchor for signal transduction enzymes. Cell Signal. 7:747-757.

    PubMed  Google Scholar 

  39. Chan, P. H. 1996. Role of oxidants in ischemic brain damage. Stroke 27:1124-1129.

    PubMed  Google Scholar 

  40. Yoshimi, K., Takeda, M., Nishimura, T., Kudo, T., Nakamura, Y., Tada, K., and Iwata, N. 1991. An immunohistochemical study of MAP2 and clathrin in gerbil hippocampus after cerebral ischemia. Brain Res. 560:149-158.

    PubMed  Google Scholar 

  41. Roberts-Lewis, J. M., Savage, M. J., Marcy, V. R., Pinsker, L. R., and Siman, R. 1994. Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J. Neurosci. 14:3934-3944.

    PubMed  Google Scholar 

  42. Taylor, C. P. and Weber, M. L. 1993. Effect of temperature on synaptic function after reduced oxygen and glucose in hippocampal slices. Neuroscience 52:555-562.

    PubMed  Google Scholar 

  43. Taylor, C. P., Weber, M. L., Gaughan, C. L., Lehning, E. J., and LoPachin, R. M. 1999. Oxygen/glucose deprivation in hippocampal slices: Altered intraneuronal elemental composition predicts structural and functional damage. J. Neurosci. 19:619-629.

    PubMed  Google Scholar 

  44. Siesjo, B. K. 1992. Pathophysiology and treatment of focal cerebral ischemia. I. Pathophysiology. J. Neurosurg. 77:169-184.

    Google Scholar 

  45. Dykens, J. A. 1994. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochem. 63:584-591.

    PubMed  Google Scholar 

  46. White, R. J. and Reynolds, I. J. 1997. Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. J. Physiol. 498:31-47.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yorifuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikemoto, T., Yorifuji, H., Satoh, T. et al. Reversibility of Cisternal Stack Formation During Hypoxic Hypoxia and Subsequent Reoxygenation in Cerebellar Purkinje Cells. Neurochem Res 28, 1535–1542 (2003). https://doi.org/10.1023/A:1025674409572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025674409572

Navigation